Skip to main content
Log in

Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Several phosphate transporters (PTs) that belong to the Pht2 family have been released in bioinformatics databases, but only a few members of this family have been functionally characterized. In this study, we found that wheat TaPHT2;1 shared high identity with a subset of Pht2 in diverse plants. Expression analysis revealed that TaPHT2;1 was strongly expressed in the leaves, was up-regulated by low Pi stress, and exhibited a circadian rhythmic expression pattern. TaPHT2;1–green fluorescent protein fusions in the leaves of tobacco and wheat were specifically detected in the chloroplast envelop. TaPHT2;1 complemented the Pi transporter activities in a yeast mutant with a defect in Pi uptake. Knockdown expression of TaPHT2;1 significantly reduced Pi concentration in the chloroplast under sufficient (2 mM Pi) and deficient Pi (100 μM Pi) conditions, suggesting that TaPHT2;1 is crucial in the mediation of Pi translocation from the cytosol to the chloroplast. The down-regulated expression of TaPHT2;1 resulted in reduced photosynthetic capacities, total P contents, and accumulated P amounts in plants under sufficient and deficient Pi conditions, eventually leading to worse plant growth phenotypes. The TaPHT2;1 knockdown plants exhibited pronounced decrease in accumulated phosphorus in sufficient and deficient Pi conditions, suggesting that TaPHT2;1 is an important factor to associate with a distinct P signaling that up-regulates other PT members to control Pi acquisition and translocation within plants. Therefore, TaPHT2;1 is a key member of the Pht2 family involved in Pi translocation, and that it can function in the improvement of phosphorus usage efficiency in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

GUS:

β-Glucuronidase

GFP:

Green fluorescent protein

NPQ:

Nonphotochemical quenching

ORF:

Open reading frame

P:

Phosphorus

PCR:

Polymerase chain reaction

Pi:

Inorganic phosphorus

PT:

Phosphate transporter

WT:

Wild type

References

  • Ai PH, Sun SB, Zhao JN, Fan XR, Xin WJ, Guo Q, Yu L, Shen QR, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  PubMed  CAS  Google Scholar 

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Bun-ya M, Nishimura M, Harashima S, Oshima Y (1991) The PHO84 gene of Saccharomyces cerevisae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    PubMed  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Chen AQ, Hu J, Sun SB, Xu GH (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Cirillo VP (1989) Sugar transport in normal and mutant yeast cells. Methods Enzymol 174:617–622

    Article  PubMed  CAS  Google Scholar 

  • Corcuera L, Gil-Pelegrin E, Notivol E (2011) Intraspecific variation in pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures. PLoS ONE 6:e28772

    Article  PubMed  CAS  Google Scholar 

  • Daram P, Brunner S, Persson BL, Amrhein N, Bucher M (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206:225–233

    Article  PubMed  CAS  Google Scholar 

  • Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11:2153–2166

    PubMed  CAS  Google Scholar 

  • Davies TGE, Ying J, Xu Q, Li ZS, Li J, Gordon-Weeks R (2002) Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant Cell Environ 25:1325–1339

    Article  CAS  Google Scholar 

  • Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol 107:207–213

    PubMed  CAS  Google Scholar 

  • Dunlap JC (1996) Genetic and molecular analysis of circadian rhythms. Annu Rev Genet 30:579–601

    Article  PubMed  CAS  Google Scholar 

  • Edwards GE, Huber SC, Gurierrez M (1975) Photosynthetic properties of plant protoplasts. Academic Press, New York, pp 299–322

    Google Scholar 

  • Elliott DE, Reuter DJ, Reddy GD, Abbott R (1997) Phosphorus nutrition of spring wheat (Triticum aestivum L.). 1. Effects of phosphorus supply on plant symptoms, yield, components of yield, and plant phosphorus uptake. Aust J Agric Res 455:855–867

    Article  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62

    Article  CAS  Google Scholar 

  • Giuliano G, Hoffman NE, Ko K, Scolnik PA, Cashmore AR (1988) A light-entrained circadian clock controls transcription of several plant genes. EMBO J 7:3635–3642

    PubMed  CAS  Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P et al (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070

    Article  PubMed  Google Scholar 

  • Hall JC (1995) Tripping along the trial to the molecular mechanisms of biological clocks. Trends Neurosci 18:230–240

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the Quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Hennessey TL, Field CB (1992) Evidence of multiple circadian oscillators in bean plants. J Biol Rhythms 7:105–113

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N, Langridge P, Bacic A (2008) Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol 49:691–703

    Article  PubMed  CAS  Google Scholar 

  • Kloppstech K (1985) Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta 165:502–506

    Article  CAS  Google Scholar 

  • Knappe S, Flügge UI, Fischer K (2003) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131:1178–1190

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Strayer CA, Kulkarni RD, Taylor W, Ishiura M, Golden SS, Johnson CH (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 90:5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Leggewie G, Willmiter L, Riesmeier JW (1997) Two cDNAs from potato are able to compliment a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9:381–392

    PubMed  CAS  Google Scholar 

  • Li R-J, Lu W-J, Gu J-T, Li X-J, Guo C-J, Xiao K (2011a) Molecular characterization and functional analysis of OsPHY2, a phytase gene classified in histidine acid phosphatase type in rice (Oryza sativa L.). Afr J Biotechnol 10:11110–11123

    CAS  Google Scholar 

  • Li Z, Gao Q, Liu Y, He C, Zhang X, Zhang J (2011b) Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233:1129–1143

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91–99

    Article  PubMed  CAS  Google Scholar 

  • Liu T-L, Li J-C, Gu J-T, Lu W-J, Guo C-J, Li R-J, Xiao K (2011) Cloning and molecular characterization of TaAGO1, a member of Argonaute gene family in wheat (Triticum aestivum L.). Afr J Biotechnol 10:13407–13417

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martinez P, Persson B (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638

    Article  PubMed  CAS  Google Scholar 

  • Miao J, Sun JH, Liu DC, Li B, Zhang AM, Li ZS, Tong YP (2009) Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. J Genet Genomics 36:455–466

    Article  PubMed  CAS  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA 94:7098–7102

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA 93:10519–10523

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Kay SA, Chua NH (1988) A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev 2:376–382

    Article  CAS  Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Hawkesford MJ (2010) Food security: increasing yield and improving resource use efficiency. Proc Nutr Soc 69:592–600

    Article  PubMed  Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol 172:35–46

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Preuss CP, Huang CY, Gilliham M, Tyerman SD (2010) Channel-like characteristics of the low-affinity barley phosphate transporter PHT1;6 when expressed in Xenopus oocytes. Plant Physiol 152:1431–1441

    Article  PubMed  CAS  Google Scholar 

  • Preuss CP, Huang CY, Tyerman SD (2011) Proton-coupled high-affinity phosphate transport revealed from heterologous characterization in Xenopus of barley-root plasma membrane transporter, HvPHT1;1. Plant Cell Environ 34:681–689

    Article  PubMed  CAS  Google Scholar 

  • Rae AL, Cybinski DH, Jarmey JM, Smith FW (2003) Characterization of two phosphate transporters from barley: evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol 53:27–36

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  PubMed  CAS  Google Scholar 

  • Rausch C, Zimmermann P, Amrhein N, Bucher M (2004) Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. Plant J 39:13–28

    Article  PubMed  CAS  Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:88–299

    Article  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  PubMed  CAS  Google Scholar 

  • Schünmann PHD, Richardson AE, Smith FW, Delhaize E (2004a) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865

    Article  PubMed  Google Scholar 

  • Schünmann PHD, Richardson AE, Vickers CE, Delhaize E (2004b) Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136:4205–4214

    Article  PubMed  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Revwalk 51:53–105

    Article  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Cybinski DH, Rae AL (1999) Regulation of expression of genes encoding phosphate transporters in barley roots. In plant nutrition: molecular biology and genetics. In: Proceedings of the Sixth International Symposium on Genetics and Molecular Biology of Plant Nutrition, Elsinore, Denmark, Kluwer Academic Publishers, Dordrecht, pp 145–150

  • Sun Z-H, Ding C-H, Li X-J, Xiao K (2012) Molecular characterization and expression analysis of TaZFP15, a C2H2- type zinc finger transcription factor gene in wheat (Triticum aestivum L.). J Integr Agric 11:31–42

    CAS  Google Scholar 

  • Sweeney BM (1987) Rhythmic Phenomena in Plants. Academic Press, San Diego

    Google Scholar 

  • Sweeney BM, Haxo FT (1961) Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134:1361–1363

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    Article  PubMed  CAS  Google Scholar 

  • Versaw W, Metzenberg R (1995) Repressible cation-phosphate symporters in Neurospora crassa. Proc Natl Acad Sci USA 92:3884–3887

    Article  PubMed  CAS  Google Scholar 

  • Walker DA, Sivak MN (1986) Photosynthesis and phosphate: a cellular affair? Trends Biochem Sci 11:176–179

    Article  CAS  Google Scholar 

  • Wang Z-Y, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Wang G-Y, Shi J-L, Gina Ng, Battle SL, Zhang C, Hua L (2011) Circadian clock-regulated phosphate transporter PHT4;1 plays an important role in Arabidopsis defense. Mol Plant 4:516–526

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Zhang C, Harrison M, Wang Z-Y (2005) Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol Breeding 15:221–231

    Article  CAS  Google Scholar 

  • Yamori W, Takahashi S, Makino A, Price GD, Badger MR, von Caemmerer S (2011) The roles of ATP synthase and the cytochrome b6/f complexes in limiting chloroplast electron transport and determining photosynthetic capacity. Plant Physiol 155:956–962

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30971773), the National Transgenic Major Program of China (No. 2011ZX08008) and Natural Science Foundation of Hebei (No. C2010000752 and No. C2010000720).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjing Lu or Kai Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 373 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, C., Zhao, X., Liu, X. et al. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta 237, 1163–1178 (2013). https://doi.org/10.1007/s00425-012-1836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1836-2

Keywords

Navigation