Skip to main content

Advertisement

Log in

Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO2, but calcification rates were not significantly affected by CO2 or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO2 and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albright R, Mason B, Langdon C (2008) Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs 27:485–490

    Article  Google Scholar 

  • Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA. doi:107:20400-20404

    PubMed  Google Scholar 

  • Alexandre A, Silva J, Buapet P, Björk M, Santos R (2012) Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2:2625–2635

    Article  PubMed Central  PubMed  Google Scholar 

  • Andersson AJ, Kuffner IB, Mackenzie FT, Jokiel PL, Rodgers KS, Tan A (2009) Net loss of CaCO3 from coral reef communities due to human induced seawater acidification. Biogeosci Discuss 6:2163–2182

    Article  Google Scholar 

  • Andria J, Vergara J, Perez-Llorens JL (1999) Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol 34:497–504

    Article  Google Scholar 

  • Borowitzka MA, Larkum AWD (1976) Calcification in the Green Alga Halimeda III. The sorces of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. J Exp Bot 27:879–889

    Article  CAS  Google Scholar 

  • Brewer PG (1997) Ocean chemistry of the fossil fuel CO2 signal: the haline signal of “business as usual”. Geophys Res Lett 24(11):1367–1369

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30:911–923

    Article  Google Scholar 

  • Corzo A, Niell FX (1991) Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. J Exp Mar Biol Ecol 146:181–191

    Article  CAS  Google Scholar 

  • Delgado O, Lapointe BE (1994) Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment. Coral Reefs 13:151–159

    Article  Google Scholar 

  • Demes KW, Bell SS, Dawes CJ (2009) The effects of phosphate on the biomineralization of the green alga, Halimeda incrassata (Ellis) Lam. J Exp Mar Biol Ecol 374:123–127

    Article  CAS  Google Scholar 

  • Demes KW, Littler MM, Littler DS (2010) Comparative phosphate acquisition in giant-celled rhizophytic algae (Bryopsidales, Chlorophyta): fleshy vs. calcified forms. Aquat Bot 92:157–160

    Article  CAS  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JS, Steneck RS (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef: a vulnerability assessment. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Australia

    Google Scholar 

  • Dickson, AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K: deep sea research Part A. Oceanogr Res Papers 37(5):755–766

    CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep sea research Part A. Oceanogr Res Papers 34:1733–1743

    CAS  Google Scholar 

  • Drew EA (1983) Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef province. Coral Reefs 2:101–110

    Article  Google Scholar 

  • Drew EA, Abel KM (1988) Studes on Halimeda II. Reproduction, particularly the seasonality of gametangia formation, in a number of species from the Great Barrier Reef Province. Coral Reefs 6:207–218

    Article  Google Scholar 

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    Article  CAS  PubMed  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414

    Article  CAS  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  PubMed  Google Scholar 

  • Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2011) Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar Biol Res 7:565–575

    Article  Google Scholar 

  • Fong P, Boyer KE, Kamer K, Boyle KA (2003) Influence of initial tissue nutrient status of tropical marine algae on response to nitrogen and phosphorus additions. Mar Ecol Prog Ser 262:111–123

    Article  Google Scholar 

  • Fricke A, Teichberg M, Beilfuss S, Bischof K (2011) Succession patterns in algal turf vegetation on a Caribbean coral reef. Bot Mar 54:111–125

    Article  Google Scholar 

  • Gao K, Zheng Y (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob Chang Biol 16:2388–2398

    Article  Google Scholar 

  • Gao K, Juntian Xu, Guang Gao, Li Yahe, Hutchins DA, Huang B, Wang L, Zheng Y, Jin P, Cai X, Häder D-P, Li W, Xu K, Liu N, Ribesell U (2012) Rising CO2 and increased light exposure syngergistically reduce marine primary productivity. Nat Clim Chang 2:519–523

    CAS  Google Scholar 

  • Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22:1177–1199

    Article  Google Scholar 

  • Gordillo FJ, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJ, Aguilera J, Jiménez C (2006) The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer. J Exp Bot 57:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci 1134:320–342

    Article  CAS  PubMed  Google Scholar 

  • Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558

    Article  Google Scholar 

  • Haglund K, Björk M, Rmazanov Z, García-Reina G, Pedersén M (1992) Role of carbonic anhydrase in photosynthesis and inorganic–carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281

    Article  CAS  PubMed  Google Scholar 

  • Hillis L (1997) Coralgal reefs from a calcareous green alga perspective, and a first carbonate budget. Proc 8th Int Coral Reef Symp Panama 1:761–766

    Google Scholar 

  • Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of coral reefs. Adv Mar Biol 17:1–327

    Google Scholar 

  • Hocking PJ, Meyer CP (1991) Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Funct Plant Biol 18:339–356

    CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hofmann LC, Bischof K, Baggini C, Koop-Jakobsen K, Johnson A, Teichberg M (2013a) CO2 and inorganic nutrient enrichment affect the performance and competitive strength of a calcifying green alga and its noncalcifying epiphyte. Oecologia (submitted)

  • Hofmann LC, Straub S, Bischof K (2013b) Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. J Exp Bot 64:899–908

    Article  CAS  PubMed  Google Scholar 

  • Hofmann LC, Yildiz G, Hanelt D, Bischof K (2012) Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels. Mar Biol 159:783–792

    Article  CAS  Google Scholar 

  • Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol 386:27–33

    Article  Google Scholar 

  • Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Biol 45:577–607

    CAS  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J Phycol 45:1236–1251

    Article  CAS  Google Scholar 

  • Jan Gast G (1998) Nutrient pollution in coral reef waters. Syllabus for the reef care Curacao workshop on nutrient pollution. Reef care Curacao Contribution no. 5. http://www.reefcare.org/. (Accessed 18 June 2013)

  • Johnson VR, Brownlee C, Rickaby REM, Graziano M, Milazzo M, Hall-Spencer JM (2011) Responses of marine benthic microalgae to elevated CO2. Mar Biol 160:1813–1824

    Article  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005. St. Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey

  • Koroleff F (1983) Determination of phosphorus. In: Grasshoff K, Ehrhardt M, Kremling F (eds) Methods of seawater analysis. Verlag chemie, Weinheim, pp 125–139

    Google Scholar 

  • Kuenen M, Debrot AO (1995) A quantitative study of the seagrass and algal meadows of the spaanse water, Curaçao, The Netherlands Antilles. Aquat Bot 51:291–331

    Article  Google Scholar 

  • Langdon C, Takahashi T, Chipman D, Goddard J (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental reef. Glob Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Langdon C, Broecker WS, Hammond DE, Glenn E, Fitzsimmons K, Nelson SG, Peng TH, Hajdas I, Bonani G (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Glob Biogeochem Cycles 17:1–14

    Article  Google Scholar 

  • Lapointe BE (1987) Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikbahiae (Rhodophyceae) in the Florida Keys: an experimental field study. Mar Biol 93:561–568

    Article  CAS  Google Scholar 

  • Leclercq NI, Gattuso JP, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Glob Chang Biol 6:329–334

    Article  Google Scholar 

  • Littler MM, Littler DS, Lapointe BE (1988) A comparison of nutrient- and light-limited photosynthesis in psammophytic versus epilithic forms of Halimeda (Caulerpales, Halimedaceae) from the Bahamas. Coral Reefs 6:219–225

    Article  Google Scholar 

  • Liu Y, Xu J, Gao K (2012) CO2-driven seawater acidification increases photochemical stress in a green alga. Phycologia 51:562–566

    Article  CAS  Google Scholar 

  • Losada M, Guerrero MG (1979) The photosynthetic reduction of nitrate and its regulation. Photosynthesis in relation to model systems. Elsevier, Amsterdam, pp 365–408

    Google Scholar 

  • Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Marshall JF, Davies PJ (1988) Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6:139–148

    Article  Google Scholar 

  • Matthiessen B, Eggers SL, Krug S (2012) High nitrate to phosphorus regime attenuates negative effects of rising pCO2 on total population carbon accumulation. Biogeosciences 9:1195–1203

    Article  CAS  Google Scholar 

  • McCook LJ (1999) Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18:357–367

    Article  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2(7):1–5

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957

    Article  CAS  Google Scholar 

  • Nelson WA (2009) Calcified macroalgae-critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801

    Article  CAS  Google Scholar 

  • Nicholas DJD, Scawin JH (1956) A phosphate requirement for nitrate reductase from Neurospora crassa. Nature 178:1474–1475

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta–Bioenergetics 975:384–394

    Article  CAS  Google Scholar 

  • Price NN, Hamilton SL, Smith JE (2011) Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar Ecol Prog Ser 440:67–78

    Article  CAS  Google Scholar 

  • Purvis AC, Peters DB, Hageman RH (1974) Effect of carbon dioxide on nitrate accumulation and nitrate reductase induction in corn seedlings. Plant Physiol 53:934–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rees SA, Opdyke BN, Wilson PA, Henstock TJ (2007) Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the northern Great Barrier Reef, Australia. Coral Reefs 26:177–188

    Article  Google Scholar 

  • Renegar DA, Riegl BM (2005) Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser 293:69–76

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso JP (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131

    Article  CAS  Google Scholar 

  • Robbins LL, Knorr PO, Hallock P (2009) Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosci Discuss 6:4895–4918

    Article  Google Scholar 

  • Robbins, LL, Hansen, ME, Kleypas, JA, and Meylan, SC (2010) CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). U.S. Geological Survey Open-File Report 2010–1280

  • Rokitta SD, John U, Rost B (2012) Ocean acidification affects redox-balance and ion-homeostasis in the life-cyce stages of Emiliania huxleyi. PLoS ONE 7:e52212. doi:10.1371/journal.pone.0052212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell BD, Thompson J-A, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol 15:2153–2162

    Article  Google Scholar 

  • Ryther JH, Dunstan WM (1971) Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171:1008

    Article  CAS  PubMed  Google Scholar 

  • Sinutok S, Hill R, Doblin MA, Wuhrer R, Ralph PJ (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200

    Article  CAS  Google Scholar 

  • Smith SV (1984) Phosphorus versus nitrogen limitation in the marine environment. Limnol Oceanogr 29:1149–1160

    Article  CAS  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Article  CAS  Google Scholar 

  • Syrett PJ (1981) Nitrogen metabolism of microalgae. Can Bull Fish Aquat Sci 210:182–210

    Google Scholar 

  • Teichberg M, Fricke A, Bischof K (2013) Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef. Aquat Bot 104:25–33

    Article  CAS  Google Scholar 

  • Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20

    Article  CAS  Google Scholar 

  • Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ (1988) Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can J Bot 66:2083–2097

    CAS  Google Scholar 

  • van den Hoek C, Colijn F, Cortel-Breeman AM, Wanders JB (1972) Algal vegetation types along the shores of inner bays and lagoons of curacao and the lagoon Lac (Bonaire), Netherlands Antilles. Elsevier, Holland

    Google Scholar 

  • van den Hoek C, Cortel-Breeman AM, Wanders JBW (1975) Algal zonation in the fringing coral reef of Curacao, Netherlands Antilles, in relation to zonation of corals and gorgonians. Aquat Bot 1:269–308

    Article  Google Scholar 

  • Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences Discuss 7:3855–3878

    Article  Google Scholar 

  • Xia JR, Gao KS (2005) Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J Integr Plant Biol 47:668–675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christian Brandt and Andrian Basilico for help with the experimental set-up, Dorothea Dasbach for tissue carbon and nitrogen analysis and Matthias Birkicht for dissolved inorganic nutrient analysis. Funding for this project was provided by the German Federal Ministry of Education and Research (BMBF) through the cooperative research project Biological Impacts of Ocean Acidification (BIOACID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie C. Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, L.C., Heiden, J., Bischof, K. et al. Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Planta 239, 231–242 (2014). https://doi.org/10.1007/s00425-013-1982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1982-1

Keywords

Navigation