Skip to main content
Log in

Trichome differentiation on leaf primordia of Helianthus annuus (Asteraceae): morphology, gene expression and metabolite profile

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Sunflower trichomes fully develop on embryonic plumula within 3 days after start of germination. Toxic sesquiterpene lactones are produced immediately thereafter thus protecting the apical bud of the seedling against herbivory.

Helianthus annuus harbors non-glandular and two different types of multicellular glandular trichomes, namely the biseriate capitate glandular trichomes and the uniseriate linear glandular trichomes. The development of capitate glandular trichomes is well known from anther tips on sunflower disk florets, but not from leaves and no information is yet available on the development of the linear glandular trichomes. Scanning electron microscopy of sunflower seedlings unravelled that within the first 40 h of seed germination all three types of trichomes started to emerge on primordia of the first true leaves. Within the following 20–30 h trichomes developed from trichoblasts to fully differentiated hairs. Gene expression studies showed that genes involved in the trichome-based sesquiterpene lactone formation were up-regulated between 72 and 96 h after start of germination. Metabolite profiling with HPLC confirmed the synthesis of sesquiterpene lactones which may contribute to protect the germinating seedlings from herbivory. The study has shown that sunflower leaf primordia can serve as a fast and easy to handle model system for the investigation of trichome development in Asteraceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CGT:

Capitate glandular trichomes

GT:

Glandular trichomes

LGT:

Linear glandular trichomes

NGT:

Non-glandular trichomes

RT:

Room temperature

SEM:

Scanning electron microscopy

References

  • Aljancic I, Vajs V, Menkovic N, Karadzic I, Juranic N, Milosavljevic S, Macura S (1999) Flavones and sesquiterpene lactones from Achillea atrata subsp. multifida: antimicrobial activity. J Nat Prod 62:909–911

    Article  CAS  PubMed  Google Scholar 

  • Amrehn E, Heller A, Spring O (2014) Capitate glandular trichomes of Helianthus annuus (Asteraceae): ultrastructure and cytological development. Protoplasma 251:161–167

    Article  PubMed  Google Scholar 

  • Aschenbrenner AK (2014) Die linearen drüsenhaare der sonnenblume: morphologie, vorkommen, metabolitprofil und sesquiterpenbiosynthese. Dissertation, University of Hohenheim, Germany

  • Aschenbrenner AK, Horakh S, Spring O (2013) Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence. AoB Plants 5:plt028. doi:10.1093/aobpla/plt028

    Article  Google Scholar 

  • Binet MN, Steinmetz A, Tessier LH (1989) The primary structure of sunflower (Helianthus annuus) ubiquitin. Nucl Acids Res 17:2119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chacon De-la-Cruz I, Riley-Saldana CA, Gonzalez-Esquinca AR (2013) Secondary metabolites during early development in plants. Phytochem Rev 12:47–64

    Article  Google Scholar 

  • Favi F, Cantrell CL, Mebrahtu T, Kraemer ME (2008) Leaf peltate glandular trichomes of Vernonia galamensis ssp. galamensis var. ethiopica: development, ultrastructure, and chemical composition. Int J Plant Sci 169:605–614

    Article  CAS  Google Scholar 

  • Gershenzon J, Rossiter M, Mabry TJ, Rogers CE, Blust MH, Hopkins TL (1985) Insect antifeedant terpenoids in wild sunflower. In: Hedin PA, Cutler HC, Hammock BD, Menn JJ, Moreland DE, Plimmer JR (eds) Bioregulators for pest control. ACS Symposium Series 276, pp 433–446

  • Göpfert JC, Heil N, Conrad J, Spring O (2005) Cytological development and sesquiterpene lactone secretion in capitate glandular trichomes of sunflower. Plant Biol 7:148–155

    Article  PubMed  Google Scholar 

  • Göpfert JC, Conrad J, Spring O (2006) 5-Deoxynevadensin, a novel flavone in sunflower and aspects of biosynthesis during trichome development. Nat Prod Commun 1:335–340

    Google Scholar 

  • Göpfert JC, MacNevin G, Ro DK, Spring O (2009) Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol 9:86

    Article  PubMed Central  PubMed  Google Scholar 

  • Göpfert JC, Bülow AK, Spring O (2010) Identification and functional characterization of a new sunflower germacrene-A-synthase (HaGAS3). Nat Prod Commun 5:709–715

    PubMed  Google Scholar 

  • Gören N, Woerdenbag HJ, Bozok-Johansson C (1996) Cytotoxic and antibacterial activities of sesquiterpene lactones isolated from Tanacetum praeteritum subsp. praeteritum. Planta Med 62:419–422

    Article  PubMed  Google Scholar 

  • Heil N, Spring O (1999) Sesquiterpenlakton-Bildung im Verlauf der Drüsenhaarentwicklung bei Sonnenblumen. Sektionstagung der Sektion pflanzliche Naturstoffe der Deutschen Botanischen Gesellschaft, Bonn

  • Ikezawa N, Göpfert JC, Nguyen DT, Kim SU, O’Maille PE, Spring O, Ro DK (2011) Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. J Biol Chem 286:21601–21611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knight DW (1995) Feverfew: chemistry and biological activity. Nat Prod Rep 12:271–276

    Article  CAS  PubMed  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  PubMed  Google Scholar 

  • Mazeyrat F, Salles S, Drevet J, Roeckel-Drevet P, Tourvieille D, Ledoigt G (1998) Isolation of a complete PAL cDNA from sunflower. Plant Physiol 117:719

  • Monteiro WR, De Moraes Castro M, Mazzoni-Viveiros SC, Mahlberg PG (2001) Development and some histochemical aspects of foliar glandular trichomes of Stevia rebaudiana (Bert.) Bert.—Asteraceae. Braz J Bot, ISSN 1806-9959. doi:10.1590/S0100-84042001000300013

  • Mori K, Matsushima Y (1995) Synthesis of mono- and sesquiterpenoids; Homogynolide A, an insect antifeedant isolated from Homogyne alpina. Synthesis 7:845–850

    Article  Google Scholar 

  • Mullin CA, Alfatafta AA, Harman JL, Everett SL, Serino AA (1991) Feeding and toxic effects of floral sesquiterpene lactones, diterpenes, and phenolics from sunflower (Helianthus annuus L.) on western corn rootworm. J Agric Food Chem 39:2293–2299

    Article  CAS  Google Scholar 

  • Nguyen DT, Göpfert JC, Ikezawa N, MacNevin G, Kathiresan M, Conrad J, Spring O, Ro DK (2010) Biochemical conservation and evolution of germacrene A oxidase in Asteraceae. J Biol Chem 285:16588–16598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nonogaki H (2010) MicroRNA gene regulation cascades during early stages of plant development. Plant Cell Physiol 51:1840–1846

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Soltis DE, Arnold D (1987) Variation and localization of flavonoid aglyconesin Helianthus annuus (Compositae). Am J Bot: 224–233

  • Ritesh KY, Rajender SS, Farzana S, Awadesh KS, Neelam SS (2014) Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol Biochem 74:70–83

    Article  Google Scholar 

  • Ro DK, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Arch Biochem Biophys 448:104–116

    Article  CAS  PubMed  Google Scholar 

  • Schilling EE, Panero JL, Storbeck TA (1987) Flavonoids of Helianthus series microcephali. Biochem Syst Ecol 15:671–672

    Article  CAS  Google Scholar 

  • Schmidt CO, Bouwmeester HJ, Bülow N, König WA (1999) Isolation, characterization, and mechanistic studies of (-)-alpha-gurjunene synthase from Solidago canadensis. Arch Biochem Biophys 364:167–177

    Article  CAS  PubMed  Google Scholar 

  • Schnittger A, Hülskamp M (2002) Trichome morphogenesis: a cell-cyle perspective. Philos T Roy Soc London B 357:823–826

    Article  CAS  Google Scholar 

  • Spring O, Kupka J, Maier B, Hager A (1982) Biological activities of sesquiterpene lactones from Helianthus annuus: antimicrobial and cytotoxic properties; influence on DNA, RNA, and protein synthesis. Z Naturforschung C Biosci 37:1087–1091

    CAS  Google Scholar 

  • Spring O, Bienert U (1987) Capitate glandular hairs from sunflower leaves: development, distribution and sesquiterpene lactone content. J Plant Physiol 130:441–448

    Article  CAS  Google Scholar 

  • Spring O, Bienert U, Klemt V (1987) Sesquiterpene lactones in glandular trichomes of sunflower leaves. J Plant Physiol 130:433–439

    Article  CAS  Google Scholar 

  • Spring O, Schilling EE (1989) Chemosystematic investigation of the annual species of Helianthus (Asteraceae). Part II in the series “The sesquiterpene lactone chemistry of Helianthus”. Biochem Syst Ecol 17:519–528

    Article  CAS  Google Scholar 

  • Spring O, Priester T, Klemt V, Kruppa J (1989a) The possible function of sesquiterpene lactones in sunflower. In: Proc sunflower res workshop. Fargo, pp 21–22

  • Spring O, Benz T, Ilg M (1989b) Sesquiterpene lactones of the capitate glandular trichomes of Helianthus annuus. Phytochemistry 28:745–749

    Article  CAS  Google Scholar 

  • Spring O (1991) Trichome microsampling of sesquiterpene lactones for the use of systematic studies. In: Fischer NH, Isman MB, Stafford HA (eds) Modern phytochemical methods. Recent advances in phytochemistry, vol 25. Plenum Press, New York, pp 319–345

    Chapter  Google Scholar 

  • Spring O, Rodon U, Macias FA (1992) Sesquiterpenes from non-capitate glandular trichomes of Helianthus annuus L. Phytochemistry 31:1541–1544

    Article  CAS  Google Scholar 

  • Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68

    Article  CAS  PubMed  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Plant trichomes. Adv Bot Res 31:1–30

    Article  Google Scholar 

  • Zheng GQ (1994) Cytotoxic terpenoids and flavonoids from Artemisia annua. Planta Med 60:54–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank J. Prasifka, U.S. Department of Agriculture, Fargo, North Dakota, for helpful suggestions in preparing the manuscript. The technical assistance in capillary electrophoresis by R. Zipper, Institute of Botany, University of Hohenheim, is gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; project SP292/22-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otmar Spring.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Supplementary material 2 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aschenbrenner, AK., Amrehn, E., Bechtel, L. et al. Trichome differentiation on leaf primordia of Helianthus annuus (Asteraceae): morphology, gene expression and metabolite profile. Planta 241, 837–846 (2015). https://doi.org/10.1007/s00425-014-2223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2223-y

Keywords

Navigation