Skip to main content
Log in

Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The present review discusses not only advances in coconut tissue culture and associated biotechnological interventions but also future research directions toward the resilience of this important palm crop.

Coconut (Cocos nucifera L.) is commonly known as the ‘tree of life’. Every component of the palm can be used to produce items of value and many can be converted into industrial products. Coconut cultivation faces a number of acute problems that reduce its productivity and competitiveness. These problems include various biotic and abiotic challenges as well as an unstable market for its traditional oil-based products. Around 10 million small-holder farmers cultivate coconut palms worldwide on c. 12 million hectares of land, and many more people own a few coconut palms that contribute to their livelihoods. Inefficiency in the production of seedlings for replanting remains an issue; however, tissue culture and other biotechnological interventions are expected to provide pragmatic solutions. Over the past 60 years, much research has been directed towards developing and improving protocols for (i) embryo culture; (ii) clonal propagation via somatic embryogenesis; (iii) homozygote production via anther culture; (iv) germplasm conservation via cryopreservation; and (v) genetic transformation. Recently other advances have revealed possible new ways to improve these protocols. Although effective embryo culture and cryopreservation are now possible, the limited frequency of conversion of somatic embryos to ex vitro seedlings still prevents the large-scale clonal propagation of coconut. This review illustrates how our knowledge of tissue culture and associated biotechnological interventions in coconut has so far developed. Further improvement of protocols and their application to a wider range of germplasm will continue to open up new horizons for the collection, conservation, breeding and productivity of coconut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BM72:

Karunaratne and Periyapperuma (1989) medium

ABA:

Abscisic acid

AC:

Activated charcoal

BAP:

6-Benzylaminopurine

GA3 :

Gibberellic acid

2iP:

2-Isopentyl adenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

PGR(s):

Plant growth regulator(s)

TDZ:

Thidiazuron

SE:

Somatic embryogenesis

Y3:

Eeuwens (1976) basal medium

References

  • Adkins SW, Samosir YMS (2002) Embryo culture activities at the University of Queensland. In: Engelmann F, Batugal P, Oliver L (eds) Coconut embryo in vitro culture: Part II. Merida, Mexico, pp 163–168

    Google Scholar 

  • Adkins SW, Samosir YMS, Ernawati A, Godwin ID, Drew RA (1998) Control of ethylene and use of polyamines can optimise the conditions for somatic embryogenesis in coconut (Cocos nucifera L.) and papaya (Carica papaya L.). In: Drew RA (ed) Proceedings of the international symposium of biotechnology in tropical and subtropical species. Australia, Brisbane, pp 459–466

    Google Scholar 

  • Andrade-Torres A, Oropeza C, Sáenz L, González-Estrada T, Ramírez-Benítez J, Becerril K, Chan J, Rodríguez-Zapata L (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 66:790–800. doi:10.2478/s11756-011-0104-4

    Article  CAS  Google Scholar 

  • Antonova ID (2009) Somatic embryogenesis for micropropagation of coconut (Cocos nucifera L.). PhD Thesis, The University of Queensland, Australia,

  • Ashburner GR, Thompson WK, Burch JM (1993) Effect of alpha-naphthaleneacetic acid and sucrose levels on the development of cultured embryos of coconut. Plant Cell Tiss Org 35:157–163

    Article  CAS  Google Scholar 

  • Assy-Bah B, Engelmann F (1992a) Cryopreservation of immature embryos of coconut (Cocos nucifera L.). CryoLett 13:67–74

    Google Scholar 

  • Assy-Bah B, Engelmann F (1992b) Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. CryoLett 13:117–126

    Google Scholar 

  • Assy-Bah B, Durand-Gasselin T, Engelmann F, Pannetier C (1989) The in vitro culture of coconut (Cocos nucifera L.) zygotic embryos. Revised and simplified method of obtaining coconut plantlets for transfer to the field. Oleagineux 44:515–523

    Google Scholar 

  • Backs-Hüsemann D, Reinert J (1970) Embryobildung durch isolierte Einzelzellen aus Gewebekulturen von Daucus carota. Protoplasma 70:49–60. doi:10.1007/BF01276841

    Article  Google Scholar 

  • Bajaj YPS (1984) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53(22):1215–1216

    Google Scholar 

  • Bandupriya H, Dunwell J (2012) Overexpression of CnANT, coconut BABYBOOM homologue alters plant growth and morphology in transgenic Arabidopsis plants. Trop Agr Res 23:249–260

    Google Scholar 

  • Bandupriya HDD, Gibbings JG, Dunwell JM (2013) Isolation and characterization of an AINTEGUMENTA-like gene in different coconut (Cocos nucifera L.) varieties from Sri Lanka. Tree Genet Genomes 9:813–827. doi:10.1007/s11295-013-0600-5

    Article  Google Scholar 

  • Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tiss Org 116:67–79. doi:10.1007/s11240-013-0383-2

    Article  CAS  Google Scholar 

  • Basu A, Sethi U, Guhamukherjee S (1988) Induction of cell division in leaf cells of coconut palm by alteration of pH and its correlation with glyoxalase-I activity. J Exp Bot 39:1735–1742. doi:10.1093/jxb/39.12.1735

    Article  CAS  Google Scholar 

  • Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 327-375. doi:10.1007/978-0-387-71201-7_10

  • Bhallasarin N, Bagga S, Sopory SK, Guhamukherjee S (1986) Induction and differentiation of callus from embryos of Cocos nucifera L. by IAA-conjugates. Plant Cell Rep 5:322–324

    Article  CAS  Google Scholar 

  • Blake J (1972) A specific bioassay for inhibition of flowering. Planta 103:126–128. doi:10.1007/bf00387363

    Article  CAS  PubMed  Google Scholar 

  • Blake J, Hornung R (1995) Somatic embryogenesis in coconut (Cocos nucifera L.). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Kluwer, Dordrecht, pp 327–349

    Chapter  Google Scholar 

  • Blaydes DF (1966) Interaction of kinetin and various inhibitors in growth of soybean tissue. Physiol Plant 19(3):748–753. doi:10.1111/j.1399-3054.1966.tb07060.x

    Article  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne MMV (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. doi:10.1005/tpc.001941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Branton RL, Blake J (1983) Development of organized structures in callus derived from explants of Cocos nucifera L. Ann Bot 52:673–678

    Google Scholar 

  • Chakraborty M, Mitra A (2008) The antioxidant and antimicrobial properties of the methanolic extract from Cocos nucifera mesocarp. Food Chem 107:994–999. doi:10.1016/j.foodchem.2007.08.083

    Article  CAS  Google Scholar 

  • Chan JL, Saenz L, Talavera C, Hornung R (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17:515–521

    Article  CAS  Google Scholar 

  • Chin HF, Krishnapillay B, Hor YL (1989) A note on the cryopreservation of embryos from young coconuts (Cocos nucifera var. Mawa). Pertanika 12(2):183–186

    Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Cordova I, Jones P, Harrison NA, Oropeza C (2003) In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Mol Plant Pathol 4:99–108. doi:10.1046/j.1364-3703.2003.00152.x

    Article  CAS  PubMed  Google Scholar 

  • Cutter VM Jr, Wilson KS (1954) Effect of coconut endosperm and other growth stimulants upon the development in vitro of embryos of Cocos nucifera. Bot Gaz 115:234–240. doi:10.2307/2472513

    Article  CAS  Google Scholar 

  • De Guzman EV, Del Rosario DA (1964) The growth and development of Cocos nucifera L. makapuno embryo in vitro. Philippine Agriculturist 48:82–94

    Google Scholar 

  • Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plant 36:23–28

    Article  CAS  Google Scholar 

  • Eeuwens CJ, Blake J (1977) Culture of coconut and date palm tissue with a view to vegetative propagation. Acta Hort 78:277–286

    Article  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8(2):155–168. doi:10.1105/tpc.8.2.155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • FAOSTAT (2013) Food and Agriculture Organization of the United Nations - World coconut harvested areas in 2013 http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 22/11/2014

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  • Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci 151:193–198. doi:10.1016/S0168-9452(99)00218-6

    Article  CAS  PubMed  Google Scholar 

  • Fernando SC, Verdeil JL, Hocher V, Weerakoon LK, Hirimburegama K (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera. Plant Cell Tiss Org 72:281–283. doi:10.1023/A:1022345011002

    Article  Google Scholar 

  • Fernando SC, Vidhanaarachchi VRM, Weerakoon LK, Santha ES (2010) What makes clonal propagation of coconut difficult? AsPac J Mol Biol Biotechnol 18:163–165

    Google Scholar 

  • Foale M (2003) The coconut odyssey: the bounteous possibilities of the tree of life. ACIAR Monography No. 101. Canberra

  • Fuentes G, Talavera C, Desjardins Y, Santamaria JM (2005a) High irradiance can minimize the negative effect of exogenous sucrose on photosynthetic capacity of in vitro grown coconut plantlets. Biol Plant 49:7–15

    Article  CAS  Google Scholar 

  • Fuentes G, Talavera C, Oropeza C, Desjardins Y, Santamaría JM (2005b) Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell Dev Plant 41:69–76

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Grout BWW, Shelton K, Pritchard HW (1983) Orthodox behavior of oil palm seed and cryopreservation of the excised embryo for genetic conservation. Ann Bot 52:381–384

    Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204(495):497. doi:10.1038/204497a0

    Article  Google Scholar 

  • Gupta PK, Kendurkar SV, Kulkarni VM, Shirgurkar MV, Mascarenhas AF (1984) Somatic embryogenesis and plants from zygotic embryos of coconut (Cocos nucifera L.) in vitro. Plant Cell Rep 3:222–225

    Article  CAS  PubMed  Google Scholar 

  • Harrison NA, Jones P (2003) Diseases of coconut. Diseases of tropical fruit crops. CABI Publishing, 44 Brattle Street, 4th Floor, Cambridge, MA, 02138, USA. doi:10.1079/9780851993904.0197

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hornung R, Domas R, Lynch PT (2001) Cryopreservation of plumular explants of coconut (Cocos nucifera L.) to support programmes for mass clonal propagation through somatic embryogenesis. CryoLett 22:211–220

    CAS  Google Scholar 

  • Karunaratne S, Periyapperuma K (1989) Culture of immature embryos of coconut, Cocos nucifera L.: callus proliferation and somatic embryogenesis. Plant Sci 62:247–253

    Article  Google Scholar 

  • Karunaratne S, Gamage C, Kovoor A (1991) Leaf maturity, a critical factor in embryogenesis. J Plant Physiol 139:27–31

    Article  Google Scholar 

  • Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled Haploid Production in Crop Plants. Springer Netherlands, pp 1–4. doi:10.1007/978-94-017-1293-4_1

  • Keller WA, Rajhathy T, Lacapra J (1975) In vitro production of plants from pollen in Brassica campestris. Can J Genet Cytol 17:655–665

    Article  CAS  Google Scholar 

  • Kim HU, Jung S-J, Lee K-R, Kim EH, Lee S-M, Roh KH, Kim J-B (2013) Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues. FEBS open bio 4:25–32. doi:10.1016/j.fob.2013.11.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73. doi:10.1038/327070a0

    Article  CAS  Google Scholar 

  • Koschek PR, Alviano DS, Alviano CS, Gattass CR (2007) The husk fiber of Cocos nucifera L. (Palmae) is a source of anti-neoplastic activity. Brazilian J Med Biol Res 40:1339–1343. doi:10.1590/s0100-879x2006005000153

    Article  CAS  Google Scholar 

  • Kumar PP, Raju CR, Chandramohan M, Iyer RD (1985) Induction and maintenance of friable callus from the cellular endosperm of Cocos nucifera L. Plant Sci 40:203–207

    Article  CAS  Google Scholar 

  • Lee RF (2013) Cadang-cadang disease of palm and other diseases. Phytopathol 103:177–178

    Google Scholar 

  • Lim TK (2012) Cocos nucifera. In: Lim TK (ed) Edible medicinal and non-medicinal plants. Springer-Verlag Berlin, Berlin, pp 301–334. doi:10.1007/978-90-481-8661-7_45

  • Lopez-Villalobos A (2002) Roles of lipids in coconut (Cocos nucifera L.) embryogenesis. University of London,

  • López-Villalobos A, Dodds PF, Hornung R (2001) Changes in fatty acid composition during development of tissues of coconut (Cocos nucifera L.) embryos in the intact nut and in vitro. J Exp Bot 52:933–942

    Article  PubMed  Google Scholar 

  • López-Villalobos A, Hornung R, Dodds PF (2004) Hydrophobic metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in cultured coconut tissue. Phytochem 65:2763–2774. doi:10.1016/j.phytochem.2004.08.034

    Article  CAS  Google Scholar 

  • López-Villalobos A, Dodds PF, Hornung R (2011) Lauric acid improves the growth of zygotic coconut (Cocos nucifera L.) embryos in vitro. Plant Cell Tiss Org 106:317–327. doi:10.1007/s11240-011-9924-8

    Article  CAS  Google Scholar 

  • Magnaval C, Noirot M, Verdeil JL, Blattes A, Huet C, Grosdemange F, Buffardmorel J (1995) Free amino acid composition of coconut (Cocos nucifera L.) calli under somatic embryogenesis induction conditions. J Plant Physiol 146:155–161

    Article  CAS  Google Scholar 

  • Marina AM, Man YBC, Nazimah SAH, Amin I (2009) Antioxidant capacity and phenolic acids of virgin coconut oil. Int J Food Sci Nutr 60:114–123. doi:10.1080/09637480802549127

    Article  CAS  PubMed  Google Scholar 

  • Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131. doi:10.1038/277129a0

    Article  Google Scholar 

  • McWilliam AA, Smith SM, Street HE (1974) Origin and development of embryoids in suspension cultures of carrot (Daucus carota). Ann Bot 38:243–250

    Google Scholar 

  • Miyashima S, Honda M, Hashimoto K, Tatematsu K, Hashimoto T, Sato-Nara K, Okada K, Nakajima K (2013) A comprehensive expression analysis of the Arabidopsis MICRORNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol 54:375–384. doi:10.1093/pcp/pcs188

    Article  CAS  PubMed  Google Scholar 

  • Monfort S (1985) Androgenesis of coconut: embryos from anther culture. J Plant Breed 94:251–254

    Google Scholar 

  • Monnier M (1973) Successful growth and development of globular embryos of Capsella bursa-pastoris cultivated in vitro using a new mineral solution. Memoires Societe Botanique de France:179–195

  • Montero-Cortes M, Rodriguez-Paredes F, Burgeff C, Perez-Nunez T, Cordova I, Oropeza C, Verdeil J-L, Sáenz L (2010a) Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Org 102:251–258. doi:10.1007/s11240-010-9714-8

    Article  CAS  Google Scholar 

  • Montero-Cortes M, Saenz L, Cordova I, Quiroz A, Verdeil JL, Oropeza C (2010b) GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29(9):1049–1059. doi:10.1007/s00299-010-0890-0

    Article  CAS  PubMed  Google Scholar 

  • Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143. doi:10.2307/2437837

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • N’Nan O, Borges M, Konan JLK, Hocher V, Verdeil JL, Tregear J, N’guetta ASP, Engelmann F, Malaurie B (2012) A simple protocol for cryopreservation of zygotic embryos of ten accessions of coconut (Cocos nucifera L.). In Vitro Cell Dev Plant 48:160–166. doi:10.1007/s11627-012-9425-4

    Article  Google Scholar 

  • Nitsch JP (1969) Experimental androgenesis in Nicotiana. Phytomorphol 19:389–404

    Google Scholar 

  • N’Nan O, Hocher V, Verdeil JL, Konan JL, Ballo K, Mondeil F, Malaurie B (2008) Cryopreservation by encapsulation-dehydration of plumules of coconut (Cocos nucifera L.). CryoLett 29:339–350

    Google Scholar 

  • Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture - a review. Plant Growth Regul 26:155–163. doi:10.1023/a:1006119015972

    Article  CAS  Google Scholar 

  • Pandey DK, Chaudhary B (2014) Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310). Amer J Plant Sciences 5:80–102. doi:10.4236/ajps.2014.51012

    Article  CAS  Google Scholar 

  • Pannetier C, Buffard-Morel J (1982) Production of somatic embryos from leaf tissues of coconut, Cocos nucifera L. In: Proceedings of the 5th International Plant Tissue Culture Congress, Tokyo, Japan

  • Pech y Aké AE, Souza R, Maust B, Santamaría JM, Oropeza C (2004) Enhanced aerobic respiration improves in vitro coconut embryo germination and culture. In Vitro Cell Dev Plant 40:90–94. doi:10.1079/ivp2003480

    Article  Google Scholar 

  • Pech y Aké AE, Maust B, Orozco-Segovia A, Oropeza C (2007) The effect of gibberellic acid on the in vitro germination of coconut zygotic embryos and their conversion into plantlets. In Vitro Cell Dev Plant 43:247–253

    Article  CAS  Google Scholar 

  • Perera PI, Hocher V, Verdeil JL, Doulbeau S, Yakandawala DM, Weerakoon LK (2007a) Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep 26:21–28. doi:10.1007/s00299-006-0216-4

    Article  CAS  PubMed  Google Scholar 

  • Perera PIP, Hocher V, Verdeil JL, Yakandawala DMD, Weerakoon LK (2007b) Recent advances in anther culture of coconut (Cocos nucifera L.). In: Xu Z (ed) Biotechnology and Sustainable Agriculture 2006 and Beyond. Springer, pp 451–455

  • Perera PIP, Hocher V, Verdeil JL, Bandupriya HDD, Yakandawala DMD, Weerakoon LK (2008a) Androgenic potential in coconut (Cocos nucifera L.). Plant Cell Tiss Org 92:293–302. doi:10.1007/s11240-008-9337-5

    Article  CAS  Google Scholar 

  • Perera PIP, Perera L, Hocher V, Verdeil JL, Yakandawala DM, Weerakoon LK (2008b) Use of SSR markers to determine the anther-derived homozygous lines in coconut. Plant Cell Rep 27:1697–1703. doi:10.1007/s00299-008-0592-z

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Perera SACN, Bandaranayake CK, Harries HC (2009a) Coconut. In: Vollmann J, Rajcan I (eds) Oil Crops, vol 4. Springer, New York, pp 369–396. doi:10.1007/978-0-387-77594-4_12

  • Perera PIP, Vidhanaarachchi VRM, Gunathilake TR, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009b) Effect of plant growth regulators on ovary culture of coconut (Cocos nucifera L.). Plant Cell Tiss Org 99:73–81. doi:10.1007/s11240-009-9577-z

    Article  CAS  Google Scholar 

  • Perera PIP, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009c) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tiss Org 96:171–180. doi:10.1007/s11240-008-9473-y

    Article  CAS  Google Scholar 

  • Pérez-Núñez MT, Chan JL, Sáenz L, González T, Verdeil JL, Oropeza C (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev Plant 42:37–43. doi:10.1079/ivp2005722

    Article  Google Scholar 

  • Pérez-Núñez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19. doi:10.1007/s00299-008-0616-8

    Article  PubMed  CAS  Google Scholar 

  • Picard E, Buyser Jd (1972) Haploid seedlings of Triticum aestivum L. obtained by in vitro anther culture. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, D 277:1463–1466

    Google Scholar 

  • Reinert J (1959) Über die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. Planta 53(4):318–333. doi:10.1007/BF01881795

    Article  Google Scholar 

  • Rethinam P (2006) Asian and Pacific coconut community activities, achievements and future outlook. ACIAR Proceedings Series 125:15–21

    Google Scholar 

  • Rillo EP (1998) PCA’s embryo culture technique in the mass production of Makapuno coconuts. In: Batugal PA, Engelmann F (eds) Coconut embryo in vitro culture: Part I. Proceedings of the first workshop on embryo culture, Banao, Guinobatan, Albay, Philippines, 27-31 October 1997. International Plant Genetic Resources Institute (IPGRI), Rome, pp 69–78

  • Rillo EP, Paloma MBF (1991) Storage and transport of zygotic embryos of Cocos nucifera L. for in vitro culture. Plant Genet Resources Newslett 86:1–4

    Google Scholar 

  • Rillo EP, Cueto CA, Medes WR, Areza-Ubaldo MB (2002) Development of an improved embryo culture protocol for coconut in the Philippines. In: Engelmann F, Batugal P, Oliver J (eds) Coconut embryo in vitro culture: part II. Proceedings of second international on embryo culture workshop, Mérida, Yucatán, Mexico, 14-17 March 2000. International Plant Genetic Resources Institute (IPGRI), Rome, pp 41–65

  • Ross IA (2005) Cocos nucifera L. In: Ross IA (ed) Medicinal Plants of the World, Vol 3. Humana Press, pp 117–154. doi:10.1007/978-1-59259-887-8_3

  • Sáenz L, Herrera-Herrera G, Uicab-Ballote F, Chan JL, Oropeza C (2009) Influence of form of activated charcoal on embryogenic callus formation in coconut (Cocos nucifera). Plant Cell Tiss Org 100:301–308. doi:10.1007/s11240-009-9651-6

    Article  Google Scholar 

  • Sajini KK, Karun A, Amarnath CH, Engelmann F (2011) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos by vitrification. CryoLett 32:317–328

    CAS  Google Scholar 

  • Samosir YMS (1999) Optimisation of somatic embryogenesis in coconut (Cocos nucifera L.). PhD Thesis, The University of Queensland, Australia,

  • Samosir YMS, Adkins SW (2004) Embryo transplantation and ex vitro germination for germplasm exchange and the production of high value, endosperm mutant coconuts. In: Peiris TSG, Ranasinghe CS (eds) Proceedings of the International Conference of the Coconut Research Institute of Sri Lanka: Part II. The Coconut Research Institute of Sri Lanka, Lunuwila, Sri Lanka, pp 92–102

    Google Scholar 

  • Samosir YMS, Adkins SW (2014) Improving acclimatization through the photoautotrophic culture of coconut (Cocos nucifera) seedlings: an in vitro system for the efficient exchange of germplasm. In Vitro Cell Dev Plant 50:493–501. doi:10.1007/s11627-014-9599-z

    Article  CAS  Google Scholar 

  • Samosir YMS, Godwin ID, Adkins SW (1998) An improved protocol for somatic embryogenesis in coconut (Cocos nucifera L.). In: Drew RA (ed) Proceedings of the international symposium of biotechnology in tropical and subtropical species, vol 461. Australia, Brisbane, pp 467–475

    Google Scholar 

  • Samosir YMS, Godwin ID, Adkins SW (1999) The use of osmotically active agents and abscisic acid can optimise the maturation of coconut somatic embryos. In: Oropeza C (ed) Current advances in coconut biotechnology. CAB International, UK, pp 341–354

    Chapter  Google Scholar 

  • Santos MD, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729. doi:10.1016/j.plantsci.2004.10.004

    Article  CAS  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, deVries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Sisunandar S, Rival A, Turquay P, Samosir Y, Adkins SW (2010a) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232:435–447. doi:10.1007/s00425-010-1186-x

    Article  CAS  PubMed  Google Scholar 

  • Sisunandar S, Sopade PA, Samosir YM, Rival A, Adkins SW (2010b) Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiol 61:289–296. doi:10.1016/j.cryobiol.2010.09.007

    Article  CAS  Google Scholar 

  • Sisunandar S, Sopade PA, Samosir YMS, Rival A, Adkins SW (2012) Conservation of coconut (Cocos nucifera L.) germplasm at sub-zero temperature. CryoLett 33:465–475

    CAS  Google Scholar 

  • Sisunandar S, Novarianto H, Mashud N, Samosir YMS, Adkins SW (2014) Embryo maturity plays an important role for the successful cryopreservation of coconut (Cocos nucifera). In Vitro Cell Dev Plant 50:688–695. doi:10.1007/s11627-014-9633-1

    Article  Google Scholar 

  • Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787. doi:10.2307/2438159

    Article  CAS  Google Scholar 

  • Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apicalbasal patterning. J Exp Bot 65:1343–1360. doi:10.1093/jxb/eru005

    Article  CAS  PubMed  Google Scholar 

  • Steinmacher DA, Saldanha CW, Clement CR, Guerra MP (2007) Cryopreservation of peach palm zygotic embryos. Cryolett 28:13–22

    Google Scholar 

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108(8):1463–1475. doi:10.1093/aob/mcr033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steward FC (1958) Growth and organized development of cultured cells. III. Interpretations of the growth from free cell to carrot plant. Am J Bot 45:709–713. doi:10.2307/2439729

    Article  Google Scholar 

  • Steward FC, Marion OM, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45(10):705–708. doi:10.2307/2439728

    Article  Google Scholar 

  • Talavera C, Contreras F, Espadas F, Fuentes G, Santamaría JM (2005) Cultivating in vitro coconut palms (Cocos nucifera) under glasshouse conditions with natural light, improves in vitro photosynthesis nursery survival and growth. Plant Cell Tiss Org 83:287–292. doi:10.1007/s11240-005-7052-z

    Article  CAS  Google Scholar 

  • Teixeira JB, Sondahl MR, Nakamura T, Kirby EG (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tiss Org 40(2):105–111. doi:10.1007/bf00037662

    Article  Google Scholar 

  • Thanh-Tuyen NT, De Guzman EV (1983) Formation of pollen embryos in cultured anthers of coconut (Cocos nucifera L.). Plant Sci Lett 29:81–88

    Article  Google Scholar 

  • Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42. doi:10.1016/j.plaphy.2003.10.008

    Article  CAS  PubMed  Google Scholar 

  • Tisserat B, Vandercook CE (1985) Development of an automated plant culture system. Plant Cell Tiss Org 5:107–117. doi:10.1007/bf00040307

    Article  Google Scholar 

  • Triques K, Rival A, Beule T, Puard M, Roy J, Nato A, Lavergne D, Havaux M, Verdeil JL, Sangare A, Hamon S (1997) Photosynthetic ability of in vitro grown coconut (Cocos nucifera L.) plantlets derived from zygotic embryos. Plant Sci 127:39–51

    Article  CAS  Google Scholar 

  • Triques K, Rival A, Beule T, Morcillo F, Hocher V, Verdeil JL, Hamon S (1998) Changes in photosynthetic parameters during in vitro growth and subsequent acclimatization of coconut (Cocos nucifera L.) zygotic embryos. In: Drew RA (ed) Proceedings of the international sympodium of biotechnology in tropical and subtropical species, vol 461. Acta Hort. (ISHS), pp 275–284

  • Tsuwamoto R, Yokoi S, Takahata Y (2010) Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol 73:481–492. doi:10.1007/s11103-010-9634-3

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Ogita S, Sasamoto H, Koshino H, Nakamura T, Asami T, Yoshida S, Kamada H (2007) Identification of a factor that complementarily inhibits somatic embryogenesis with vanillyl benzyl ether in Japanese larch. Vitro Cell Dev Plant 43(3):203–208. doi:10.1007/s11627-006-9016-3

    Article  CAS  Google Scholar 

  • Vasil V, Hildebrandt AC (1965a) Differentiation of tobacco plants from single isolated cells in microcultures. Science 150:889–892. doi:10.1126/science.150.3698.889

    Article  CAS  PubMed  Google Scholar 

  • Vasil V, Hildebrandt AC (1965b) Growth and tissue formation from single isolated tobacco cells in microculture. Science 147:1454–1455. doi:10.1126/science.147.3664.1454

    Article  CAS  PubMed  Google Scholar 

  • Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13:218–221

    CAS  PubMed  Google Scholar 

  • Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18. doi:10.1006/anbo.2001.1408

    Article  Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64. doi:10.2307/2436709

    Article  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. The Jaques Cattell Press, Lancaster, Pennsylvania

    Book  Google Scholar 

  • Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123:1337–1349. doi:10.1016/j.cell.2005.09.042

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZC, Wu HS (1979) Production of haploid plantlets from unpollinated ovaries of Triticum aestivum and Nicotiana tabacum. Acta Genet Sin 6:181–183

    Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359. doi:10.1046/j.1365-313X.2002.01289.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Australian Agency for International Development (AusAID) for a scholarship awarded to Quang Thien Nguyen. We thank Australian Centre for International Agricultural Research (ACIAR) for financial support. We also acknowledge the independent reviews from Professor Jeffrey Adelberg (Clemson University, USA) and Dr. Yohannes M. S. Samosir (Bakrie Agriculture Research Institute, Indonesia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang Thien Nguyen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q.T., Bandupriya, H.D.D., López-Villalobos, A. et al. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242, 1059–1076 (2015). https://doi.org/10.1007/s00425-015-2362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2362-9

Keywords

Navigation