Skip to main content
Log in

Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Floral scent formation in Lilium ‘Siberia’ is mainly due to monoterpene presence in the floral profile. LoTPS1 and LoTPS3 are responsible for the formation of (±)-linalool and β-ocimene in Lilium ‘Siberia’.

Lilium ‘Siberia’ is a perennial herbaceous plant belonging to Liliaceae family, cultivated both as a cut flower and garden plant. The snowy white flower emits a pleasant aroma which is mainly caused by monoterpenes present in the floral volatile profile. Previously terpene synthase (TPS) genes have been isolated and characterized from various plant species but less have been identified from Liliaceae family. Here, two terpene synthase genes (LoTPS1 and LoTPS3), which are highly expressed in sepals and petals of Lilium ‘Siberia’ flower were functionally characterized recombinant LoTPS1 specifically catalyzes the formation of (Z)-β-ocimene and (±)-linalool as its main volatile compounds from geranyl pyrophosphate (GPP), whereas LoTPS3 is a promiscuous monoterpene synthase which utilizes both GPP and farnesyl pyrophosphate (FPP) as a substrate to generate (±)-linalool and cis-nerolidol, respectively. Transcript levels of both genes were prominent in flowering parts, especially in sepals and petals which are the main source of floral scent production. The gas chromatography–mass spectrometry (GC–MS) and quantitative real-time PCR analysis revealed that the compounds were emitted throughout the day, prominently during the daytime and lower levels at night following a strong circadian rhythm in their emission pattern. Regarding mechanical wounding, both genes showed considerable involvement in floral defense by inducing the emission of (Z)-β-ocimene and (±)-linalool, elevating the transcript accumulation of LoTPS1 and LoTPS3. Furthermore, the subcellular localization experiment revealed that LoTPS1 was localized in plastids, whilst LoTPS3 in mitochondria. Our findings on these two TPSs characterized from Lilium ‘Siberia’ provide new insights into molecular mechanisms of terpene biosynthesis in this species and also provide an opportunity for biotechnological modification of floral scent profile of Lilium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

TPS:

Terpene synthase

GPP:

Geranyl pyrophosphate

FPP:

Farnesyl pyrophosphate

GC–MS:

Gas chromatography–mass spectrometry

IPP:

Isopentenyl pyrophosphate

DMAPP:

Dimethylallyl pyrophosphate

MEP:

Methylerythritol phosphate

MVA:

Mevalonic acid

GGPP:

Geranylgeranyl diphosphate

ORF:

Open reading frame

qRT-PCR:

Quantitative real-time polymerase chain reaction

GFP:

Green fluorescence protein

Mono-TPSs:

Monoterpene synthases

TPSs:

Terpene synthases

GO:

Gene ontology

LB:

Luria–Bertani

IPTG:

Isopropyl-β-d-thiogalactopyranoside

PMSF:

Phenylmethanesulfonyl fluoride

BSA:

Bovine serum albumin

PDMS:

Polydimethylsiloxane

LSCM:

Laser scanning confocal microscopy

RT-PCR:

Reverse transcription PCR

DA:

Decanoic acid

References

  • Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan YP (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:803–816

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FW et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z et al (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  CAS  PubMed  Google Scholar 

  • Arimura GI, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J (2004) Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol 135:1976–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura GI, Garms S, Maffei M, Bossi S, Schulze B, Leitner M et al (2008) Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227:453–464

    Article  CAS  PubMed  Google Scholar 

  • Aros D, Gonzalez V, Allemann RK, Müller CT, Rosati C, Rogers HJ (2012) Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J Exp Bot 63:2739–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergougnoux V, Caissard JC, Jullien F, Magnard JL, Scalliet G, Cock JM et al (2007) Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226:853–866

    Article  CAS  PubMed  Google Scholar 

  • Birkett MA, Campbell CA, Chamberlain K, Guerrieri E, Hick AJ, Martin JL et al (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chang YT, Chu FH (2011) Molecular cloning and characterization of monoterpene synthases from Litsea cubeba (Lour.) Persoon. Tree Genet Genomes 7:835–844. https://doi.org/10.1007/s11295-011-0377-3

    Article  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Fu X, Mei X, Zhou Y, Du B, Watanabe N et al (2016) Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia × hybrida flowers by multi-factors of circadian clock, light, and temperature. Plant Physiol Biochem 107:1–8

    Article  CAS  PubMed  Google Scholar 

  • Corley J (2007) Fragrances for natural and certified organic personal care products: the link between fragrance and health in personal care product development. Perfum Flavorist 32:24–28

    Google Scholar 

  • Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R (2002) Molecular cloning and characterization of a new linalool synthase. Arch Biochem Biophys 405:112–121

    Article  CAS  PubMed  Google Scholar 

  • Cseke L, Dudareva N, Pichersky E (1998) Structure and evolution of linalool synthase. Mol Biol Evol 15:1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Cunillera N, Boronat A, Ferrer A (1997) The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J Biol Chem 272:15381–15388

    Article  CAS  PubMed  Google Scholar 

  • Danner H, Boeckler GA, Irmisch S, Yuan JS, Chen F, Gershenzon J et al (2011) Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa. Phytochemistry 72:897–908

    Article  CAS  PubMed  Google Scholar 

  • Davis E, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Biosynthesis. https://doi.org/10.1007/3-540-48146-X_2

    Article  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  CAS  PubMed  Google Scholar 

  • Delfine S, Csiky O, Seufert G, Loreto F (2000) Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 146:27–36

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J et al (2003) (E)-β-Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D et al (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Fahnrich A, Krause K, Piechulla B (2011) Product variability of the ‘cineole cassette’monoterpene synthases of related Nicotiana species. Mol Plant 4:965–984

    Article  CAS  PubMed  Google Scholar 

  • Falara V, Akhtar TA, Nguyen TT, Spyropoulou EA, Bleeker PM, Schauvinhold I et al (2011) The tomato terpene synthase gene family. Plant Physiol 157:770–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faldt J, Martin D, Miller B, Rawat S, Bohlmann J (2003) Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 51:119–133

    Article  PubMed  Google Scholar 

  • Fan YP, Wang XR, Yu RC, Yang P (2007) Analysis on the aroma components in several species of Hedychium. Acta Hortic Sin 34(1):231 (in Chinese)

    CAS  Google Scholar 

  • Galata M, Sarker LS, Mahmoud SS (2014) Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. Phytochemistry 102:64–73

    Article  CAS  PubMed  Google Scholar 

  • Ginglinger JF, Boachon B, Höfer R, Paetz C, Köllner TG, Miesch L et al (2013) Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. Plant Cell 25:4640–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green SA, Chen X, Nieuwenhuizen NJ, Matich AJ, Wang MY, Bunn BJ et al (2011) Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). J Exp Bot 63:1951–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutensohn M, Orlova I, Nguyen TT, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y et al (2013) Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J 75:351–363

    Article  CAS  PubMed  Google Scholar 

  • Helsper JP, Davies JA, Bouwmeester HJ, Krol AF, van Kampen MH (1998) Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95

    Article  CAS  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS et al (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2–4D motif. Plant J 55:719–733

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MH, Chang CY, Hsu SJ, Chen JJ (2008) Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol 66:663–673

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Zhang H, Leng P, Zhao J, Wang W, Wang S (2013) The emission of floral scent from Lilium ‘siberia’ in response to light intensity and temperature. Acta Physiol Plant 35:1691–1700

    Article  CAS  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J et al (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB et al (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci USA 104:5360–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaramaiah RH, Anand A, Beedkar SD, Dholakia BB, Punekar SA, Kalunke RM et al (2016) Functional characterization and transient expression manipulation of a new sesquiterpene synthase involved in β-caryophyllene accumulation in Ocimum. Biochem Biophys Res Commun 473:265–271

    Article  CAS  PubMed  Google Scholar 

  • Jia JW, Crock J, Lu S, Croteau R, Chen XY (1999) (3R)-Linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction. Arch Biochem Biophys 372:143–149

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Kim MJ, Dhandapani S, Tjhang JG, Yin JL, Wong L et al (2015) The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. J Exp Bot 66:3959–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CG, Moniodis J, Zulak KG, Scaffidi A, Plummer JA, Ghisalberti EL et al (2012) Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J Biol Chem 287:37713. https://doi.org/10.1074/jbc.M111.231787

    Article  CAS  PubMed Central  Google Scholar 

  • Kappers IF, Aharoni A, Van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Kite GC, Leon C (1995) Volatile compounds emitted from flowers and leaves of Brugmansia × candida (Solanaceae). Phytochemistry 40:1093–1095

    Article  CAS  Google Scholar 

  • Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13:2333–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Sun M, Pan HT, Zhang QX (2012) Composition and emission rhythm of floral scent volatiles from eight lily cut flowers. J Am Soc Hortic Sci 137:376–382

    Article  CAS  Google Scholar 

  • Landmann C, Fink B, Festner M, Dregus M, Engel KH, Schwab W (2007) Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch Biochem Biophys 465:417–429

    Article  CAS  PubMed  Google Scholar 

  • Lange BM, Ahkami A (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes—current status and future opportunities. Plant Biotechnol J 11:169–196

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB et al (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Chappell J (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol 147:1017–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH et al (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RH, Fan YP (2007) Changes in floral aroma constituents in Hedychium coronarium Koenig during different blooming stages. Plant Physiol Commun 43:176

    Google Scholar 

  • Li RH, Fan YP (2011) Molecular cloning and expression analysis of a terpene synthase gene, HcTPS2, in Hedychium coronarium. Plant Mol Biol Rep 29:35–42

    Article  CAS  Google Scholar 

  • Lin YL, Lee YR, Huang WK, Chang ST, Chu FH (2014) Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genet Genomes 10:75–86. https://doi.org/10.1007/s11295-013-0665-1

    Article  Google Scholar 

  • Lu S, Xu R, Jia JW, Pang J, Matsuda SP, Chen XY (2002) Cloning and functional characterization of a β-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol 130:477–486. https://doi.org/10.1104/pp.006544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucker J, Bouwmeester HJ, Schwab W, Blaas J, Van Der Plas LH, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of Slinalyl-β-d-glucopyranoside. Plant J 27:315–324

    Article  CAS  PubMed  Google Scholar 

  • Lucker J, El Tamer MK, Schwab W, Verstappen FW, van der Plas LH, Bouwmeester HJ et al (2002) Monoterpene biosynthesis in lemon (Citrus limon). FEBS J 269:3160–3171. https://doi.org/10.1046/j.1432-1033.2002.02985.x

    Article  CAS  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H, Chen L et al (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573. https://doi.org/10.1038/ng.2570

    Article  CAS  PubMed  Google Scholar 

  • Majetic CJ, Raguso RA, Ashman TL (2009) The sweet smell of success: floral scent affects pollinator attraction and seed fitness in Hesperis matronalis. Funct Ecol 23:480–487

    Article  Google Scholar 

  • Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O et al (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10b:226. https://doi.org/10.1186/1471-2229-10-226

    Article  CAS  Google Scholar 

  • Martín D, Piulachs MD, Cunillera N, Ferrer A, Bellés X (2007) Mitochondrial targeting of farnesyl diphosphate synthase is a widespread phenomenon in eukaryotes. Biochim Biophys Acta 1773:419–426. https://doi.org/10.1016/j.bbamcr.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  • McWatters HG, Roden LC, Staiger D (2001) Picking out parallels: plant circadian clocks in context. Philos Trans R Soc Lond B Biol Sci Ser B 356:1735–1743. https://doi.org/10.1098/rstb.2001.0936

    Article  CAS  Google Scholar 

  • Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949. https://doi.org/10.1111/pce.12314

    Article  PubMed  Google Scholar 

  • Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuizen NJ, Wang MY, Matich AJ, Green SA, Chen X, Yauk YK et al (2009) Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J Exp Bot 60:3203–3219

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichersky E, Dudareva N (2007) Scent engineering: toward the goal of controlling how flowers smell. Trends Biotechnol 25:105–110

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae) (I. Localization and developmental modulation of monoterpene emission and linalool synthase activity). Plant Physiol 106:1533–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967

    Article  CAS  PubMed  Google Scholar 

  • Rohrbeck D, Buss D, Effmert U, Piechulla B (2006) Localization of methyl benzoate synthesis and emission in Stephanotis floribunda and Nicotiana suaveolens flowers. Plant Biol 8:615–626

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    Article  PubMed  Google Scholar 

  • Schnee C, Köllner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene,(E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuurink RC, Haring MA, Clark DG (2006) Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends Plant Sci 11:20–25

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Ann Rev Plant Biol 52:407–436

    Article  CAS  Google Scholar 

  • Shimada T, Endo T, Fujii H, Hara M, Omura M (2005) Isolation and characterization of (E)-beta-ocimene and 1, 8 cineole synthases in Citrus unshiu Marc. Plant Sci 168:987–995

    Article  CAS  Google Scholar 

  • Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O et al (2011) Peroxisomal localization of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thabet I, Guirimand G, Guihur A, Lanoue A, Courdavault V, Papon N et al (2012) Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Mol Biol Rep 39:3235–3243

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    Article  CAS  PubMed  Google Scholar 

  • van Schie CC, Haring MA, Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Fuguang LI, Qianru LI et al (2002) Construction of a screening vector by cloning the green fluorescent protein gene into the plasmid pUC18. J Henan Med Univ. https://doi.org/10.3969/j.issn.1671-6825.2002.05.029

    Article  Google Scholar 

  • Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447

    Article  CAS  PubMed  Google Scholar 

  • Yahyaa M, Tholl D, Cormier G, Jensen R, Simon PW, Ibdah M (2015) Identification and characterization of terpene synthases potentially involved in the formation of volatile terpenes in carrot (Daucus carota L.) roots. J Agric Food Chem 63:4870–4878

    Article  CAS  PubMed  Google Scholar 

  • Yang CQ, Wu XM, Ruan JX, Hu WL, Mao YB, Chen XY et al (2013) Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum). Phytochemistry 96:46–56

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565. https://doi.org/10.1038/nprot.2007.199

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Utsumi R (2009) Diversity, regulation, and genetic manipulation of plant mono-and sesquiterpenoid biosynthesis. Cell Mol Life Sci 66:3043–3052

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 55:491–503

    Article  CAS  PubMed  Google Scholar 

  • Yue YY, Yu RC, Fan YP (2014) Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta 240:745–762

    Article  CAS  PubMed  Google Scholar 

  • Yue YY, Yu RC, Fan YP (2015) Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genom 16:470

    Article  CAS  Google Scholar 

  • Zeng H, Bio T, Qi W, Jian Z, Ping SL, Ke ZZ (2017) Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and unscented Lilium ‘Novano’. Front Plant Sci 8:1351. https://doi.org/10.3389/fpls.2017.01351

    Article  Google Scholar 

  • Zhang HX, Leng PS, Zeng H, Hu ZH, Zhao J, Wang WH, Xu F et al (2013) The floral scent emitted from Lilium ‘Siberia’ at different flowering stages and diurnal variation. Acta Hortic Sin 40:693–702

    CAS  Google Scholar 

  • Zhang TX, Sun M, Li LL, Guo YH, Xie XH, Hu BW (2017) Molecular cloning and expression analysis of a monoterpene synthase gene involved in floral scent production in lily (Lilium ‘Siberia’). Russ J Plant Physiol 64:600–607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education Program to Rangcai Yu: Promote Scientific Research and High-level Personnel Training of Cooperation with the American and Oceanica areas, International Cooperation of Science and Technology Research of Guangdong to Rangcai Yu (Grant no. 2009B050700038), and a Specialized Major Project of the Production-Study-Research Collaborative Innovation of Guangzhou Science and Information Bureau to Yanping Fan (Grant no. 156100058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rangcai Yu or Yanping Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, F., Ke, Y., Yu, R. et al. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 249, 71–93 (2019). https://doi.org/10.1007/s00425-018-3006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-3006-7

Keywords

Navigation