Skip to main content
Log in

Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The possible molecular mechanisms regulating strawberry fruit ripening were revealed by plant hormone quantification, exogenous hormone application, and RNA-sequencing.

Fruit ripening involves a complex interplay among plant hormones. Strawberry is a model for studies on non-climacteric fruit ripening. However, the knowledge on how plant hormones are involved in strawberry ripening is still limited. To understand hormonal actions in the ripening process, we performed genome-wide transcriptome and hormonal analysis for the five major hormones (abscisic acid and catabolites, auxins, cytokinins, gibberellins, and ethylene) in achenes and receptacles (flesh) at different ripening stages of the woodland strawberry Fragaria vesca. Our results demonstrate that the pre-turning stage (a stage with white flesh and red achenes defined in this study) is the transition stage from immature to ripe fruits. The combinatorial analyses of hormone content, transcriptome data, and exogenous hormone treatment indicate that auxin is synthesized predominantly in achenes, while abscisic acid (ABA), bioactive free base cytokinins, gibberellins, and ethylene are mainly produced in receptacles. Furthermore, gibberellin may delay ripening, while ethylene and cytokinin are likely involved at later stages of the ripening process. Our results also provide additional evidence that ABA promotes ripening, while auxin delays it. Although our hormone analysis demonstrates that the total auxin in receptacles remains relatively low and unchanged during ripening, our experimental evidence further indicates that ABA likely enhances expression of the endoplasmic reticulum-localized auxin efflux carrier PIN-LIKES, which may subsequently reduce the auxin level in nucleus. This study provides a global picture for hormonal regulation of non-climacteric strawberry fruit ripening and also evidence for a possible mechanism of ABA and auxin interaction in the ripening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABAGE:

ABA glucose ester

BW:

Big white

CK:

Cytokinin

DEG:

Differentially expressed gene

DPA:

Days after anthesis

FPKM:

Fragments per kilobase per million

iP:

Isopentenyladenine

NDGA:

Nordihydroguaiaretic acid

Pre-T:

Pre-turning

SW:

Small white

References

  • Aharoni A, O’Connell AP (2002) Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays. J Exp Bot 53(377):2073–2087

    Article  CAS  PubMed  Google Scholar 

  • Amil-Ruiz F, Blanco-Portales R, Munoz-Blanco J, Caballero JL (2011) The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol 52(11):1873–1903

    Article  CAS  PubMed  Google Scholar 

  • Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zazimalova E, Petrasek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485(7396):119–122

    Article  CAS  PubMed  Google Scholar 

  • Blake PS, Taylor DR, Crisp CM, Mander LN, Owen DJ (2000) Identification of endogenous gibberellins in strawberry, including the novel gibberellins GA(123), GA(124) and GA(125). Phytochemistry 55(8):887–890

    Article  CAS  PubMed  Google Scholar 

  • Calaf RE, Carrascal M, Gelpi E, Abian J (1997) Quantitative analysis of mevinolinic acid in human plasma by high-performance liquid chromatography coupled with negative-ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 11(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62(14):5079–5089

    Article  CAS  PubMed  Google Scholar 

  • Chai YM, Zhang Q, Tian L, Li CL, Xing Y, Qin L, Shen YY (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69(1):63–69

    Article  CAS  Google Scholar 

  • Chen J, Mao L, Lu W, Ying T, Luo Z (2016) Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243(1):183–197

    Article  CAS  PubMed  Google Scholar 

  • Cherian S, Figueroa CR, Nair H (2014) ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. J Exp Bot 65(17):4705–4722

    Article  CAS  PubMed  Google Scholar 

  • Concha CM, Figueroa NE, Poblete LA, Onate FA, Schwab W, Figueroa CR (2013) Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiol Biochem 70:433–444

    Article  CAS  PubMed  Google Scholar 

  • Csukasi F, Osorio S, Gutierrez JR, Kitamura J, Giavalisco P, Nakajima M, Fernie AR, Rathjen JP, Botella MA, Valpuesta V, Medina-Escobar N (2011) Gibberellin biosynthesis and signalling during development of the strawberry receptacle. New Phytol 191(2):376–390

    Article  CAS  PubMed  Google Scholar 

  • Daminato M, Guzzo F, Casadoro G (2013) A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. J Exp Bot 64(12):3775–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada-Johnson E, Csukasi F, Pizarro CM, Vallarino JG, Kiryakova Y, Vioque A, Brumos J, Medina-Escobar N, Botella MA, Alonso JM, Fernie AR, Sanchez-Sevilla JF, Osorio S, Valpuesta V (2017) Transcriptomic analysis in strawberry fruits reveals active auxin biosynthesis and signaling in the ripe receptacle. Front Plant Sci 8:889

    Article  PubMed  PubMed Central  Google Scholar 

  • Given NK, Venis MA, Gierson D (1988) Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174(3):402–406

    Article  CAS  PubMed  Google Scholar 

  • Grones P, Friml J (2015) Auxin transporters and binding proteins at a glance. J Cell Sci 128(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Han Y, Dang R, Li J, Jiang J, Zhang N, Jia M, Wei L, Li Z, Li B, Jia W (2015) Sucrose nonfermenting1-related protein kinase2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening. Plant Physiol 167(3):915–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins C, Caruana J, Schiksnis E, Liu Z (2016) Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. Sci Rep 6:29017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins C, Caruana J, Li J, Zawora C, Darwish O, Wu J, Alkharouf N, Liu Z (2017) An eFP browser for visualizing strawberry fruit and flower transcriptomes. Hortic Res 4:17029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Hollender CA, Geretz AC, Slovin JP, Liu ZC (2012) Flower and early fruit development in a diploid strawberry, Fragaria vesca. Planta 235(6):1123–1139

    Article  CAS  PubMed  Google Scholar 

  • Hollender CA, Kang CY, Darwish O, Geretz A, Matthews BF, Slovin J, Alkharouf N, Liu ZC (2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol 165(3):1062–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14(Suppl 1):S47–S59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157(1):188–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia HF, Lu D, Sun JH, Li CL, Xing Y, Qin L, Shen YY (2013) Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J Exp Bot 64(6):1677–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Mi X, Lin Y, Wu H, Gu T, Ding J, Li Y (2016) Evolution and expression patterns of cytokinin oxidase genes in Fragaria vesca. Sci Hortic (Amsterdam) 212:115–125

    Article  CAS  Google Scholar 

  • Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(Database issue):D1182–D1187

    Article  CAS  PubMed  Google Scholar 

  • Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Masuda T, Noji S (2015) Light and abscisic acid independently regulated FaMYB10 in Fragaria × ananassa fruit. Planta 241(4):953–965

    Article  CAS  PubMed  Google Scholar 

  • Kang CY, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu ZC (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25(6):1960–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ji K, Sun Y, Luo H, Wang H, Leng P (2013) The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry. Plant J 76(1):24–35

    CAS  PubMed  Google Scholar 

  • Li D, Li L, Luo Z, Mou W, Mao L, Ying T (2015) Comparative transcriptome analysis reveals the influence of abscisic acid on the metabolism of pigments, ascorbic acid and folic acid during strawberry fruit ripening. PLoS One 10(6):e0130037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Li M, Liu B, Yan M, Yu X, Zi H, Liu R, Yamamuro C (2018) Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc Natl Acad Sci USA 115(49):E11542–E11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopes PZ, Fornazzari IM, Almeida AT, Galvao CW, Etto RM, Inaba J, Ayub RA (2015) Effect of ethylene treatment on phytochemical and ethylene-related gene expression during ripening in strawberry fruit Fragaria × ananassa cv. Camino real. Genet Mol Res 14(4):16113–16125

    Article  CAS  PubMed  Google Scholar 

  • Lulsdorf M, Yuan HY, Slater S, Vandenberg A, Han X, Zaharia LI (2012) Androgenesis-inducing stress treatments change phytohormone levels in anthers of three legume species (Fabaceae). Plant Cell Rep 31(7):1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. J Plant Growth Regul 30(4):405–415

    Article  CAS  Google Scholar 

  • Martinez GA, Chaves AR, Anon MC (1994) Effect of gibberellic-acid on ripening of strawberry fruits (Fragaria ananassa Duch). J Plant Growth Regul 13(2):87–91

    Article  CAS  Google Scholar 

  • Martinez GA, Chaves AR, Anon MC (1996) Effect of exogenous application of gibberellic acid on color change and phenylalanine ammonia-lyase, chlorophyllase, and peroxidase activities during ripening of strawberry fruit (Fragaria × ananassa Duch). J Plant Growth Regul 15(3):139–146

    Article  CAS  Google Scholar 

  • Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodriguez-Franco A, Caballero JL, Schwab W, Munoz-Blanco J, Blanco-Portales R (2014) MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J Exp Bot 65(2):401–417

    Article  CAS  PubMed  Google Scholar 

  • Merchante C, Vallarino JG, Osorio S, Araguez I, Villarreal N, Ariza MT, Martinez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V (2013) Ethylene is involved in strawberry fruit ripening in an organ-specific manner. J Exp Bot 64(14):4421–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi XN, Wang XJ, Wu H, Gan LJ, Ding J, Li Y (2017) Characterization and expression analysis of cytokinin biosynthesis genes in Fragaria vesca. Plant Growth Regul 82(1):139–149

    Article  CAS  Google Scholar 

  • Moyano-Canete E, Bellido ML, Garcia-Caparros N, Medina-Puche L, Amil-Ruiz F, Gonzalez-Reyes JA, Caballero JL, Munoz-Blanco J, Blanco-Portales R (2013) FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant Cell Physiol 54(2):218–236

    Article  CAS  PubMed  Google Scholar 

  • Nam YW, Tichit L, Leperlier M, Cuerq B, Marty I, Lelievre JM (1999) Isolation and characterization of mRNAs differentially expressed during ripening of wild strawberry (Fragaria vesca L.) fruits. Plant Mol Biol 39(3):629–636

    Article  CAS  PubMed  Google Scholar 

  • Perkins-Veazie P (2010) Growth and ripening of strawberry fruit. Hortic Rev 17:267–297

    Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17(11):656–665

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Sevilla JF, Vallarino JG, Osorio S, Bombarely A, Pose D, Merchante C, Botella MA, Amaya I, Valpuesta V (2017) Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa). Sci Rep 7(1):13737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K (2011) A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. J Exp Bot 62(3):1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P (2012) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and beta-carotene contents in tomato fruit. J Exp Bot 63(8):3097–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons GM, Chua YJ, Ross JJ, Quittenden LJ, Davies NW, Reid JB (2012) Hormonal changes during non-climacteric ripening in strawberry. J Exp Bot 63(13):4741–4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DR, Blake PS, Crisp CM (2000) Identification of gibberellins in leaf tissues of day-neutral strawberry (Fragaria × ananassa Duch.) cultivars. Plant Growth Regul 30(1):5–7

    Article  CAS  Google Scholar 

  • Thompson PA (1969) The effect of applied growth substances on development of the strawberry fruit. II. Interactions of auxins and gibberellins. J Exp Bot 20(64):629–647

    Article  CAS  Google Scholar 

  • Tian MS, Prakash S, Elgar HJ, Young H, Burmeister DM, Ross GS (2000) Responses of strawberry fruit to 1-Methylcyclopropene (1-MCP) and ethylene. Plant Growth Regul 32(1):83–90

    Article  CAS  Google Scholar 

  • Tonutare T, Moor U, Szajdak L (2014) Strawberry anthocyanin determination by pH differential spectroscopic method-how to get true results? Acta Sci Pol Hortoru 13(3):35–47

    Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JN (1963) Application of gibberellic acid to strawberry plants at different stages of development. Nature 197(4862):95–96

    Article  CAS  Google Scholar 

  • Villarreal NM, Bustamante CA, Civello PM, Martinez GA (2010) Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric 90(4):683–689

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ding GQ, Gu TT, Ding J, Li Y (2017) Bioinformatic and expression analyses on carotenoid dioxygenase genes in fruit development and abiotic stress responses in Fragaria vesca. Mol Gen Genom 292(4):895–907

    Article  CAS  Google Scholar 

  • Wei W, Hu Y, Han YT, Zhang K, Zhao FL, Feng JY (2016) The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: identification and expression analysis under biotic and abiotic stresses. Plant Physiol Biochem 105:129–144

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jiang Y, Mi X, Gan L, Gu T, Ding J, Li Y (2016) Identification and expression analysis of cytokinin response regulators in Fragaria vesca. Acta Physiol Plant 38(8):198

    Article  CAS  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60(6):1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5(2):334–338

    Article  CAS  PubMed  Google Scholar 

  • Zurcher E, Muller B (2016) Cytokinin synthesis, signaling, and function—advances and new insights. Int Rev Cell Mol Biol 324:1–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yang Yuan and Decai Liu for technical support for the bioinformatic analysis. This work was supported by the National Natural Science Foundation of China [31672123 to T.G., 31471860 to J.D.] and the Fundamental Research Funds for the Central Universities [KYZ201605 to T.G.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Gu or Yi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi Li holds a two month/year visiting professor position at Nanjing Agricultural University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, T., Jia, S., Huang, X. et al. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Planta 250, 145–162 (2019). https://doi.org/10.1007/s00425-019-03155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03155-w

Keywords

Navigation