Skip to main content
Log in

Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

OsHAK16 mediates K uptake and root-to-shoot translocation in a broad range of external K concentrations, thereby contributing to the maintenance of K homeostasis and salt tolerance in the rice shoot.

Abstract

The HAK/KUP/KT transporters have been widely associated with potassium (K) transport across membranes in both microbes and plants. Here, we report the physiological function of OsHAK16, a member belonging to the HAK/KUP/KT family in rice (Oryza sativa L.). Transcriptional expression of OsHAK16 was up-regulated by K deficiency or salt stress. OsHAK16 is localized at the plasma membrane. OsHAK16 knockout (KO) dramatically reduced root K net uptake rate and growth at both 0.1 mM and 1 mM K supplies, while OsHAK16 overexpression (OX) increased total K uptake and growth only at 0.1 mM K level. OsHAK16-KO decreased the rate of rubidium (Rb) uptake and translocation compared to WT at both 0.2 mM and 1 mM Rb levels. OsHAK16 disruption decreased while its overexpression increased K concentration in root slightly but in shoot remarkably. The relative distribution of total K between shoot and root decreased by 30% in OsHAK16-KO lines and increased by 30% in its OX lines compared to WT. OsHAK16-KO diminished K uptake and K/Na ratio, while OsHAK16-OX improved K uptake and translocation from root to shoot, resulting in increased sensitivity and tolerance to salt stress, respectively. Expression of OsHAK16 enhanced the growth of high salt-sensitive yeast mutant by increasing its K but no Na content. Taking all these together, we conclude that OsHAK16 plays crucial roles in maintaining K homeostasis and salt tolerance in rice shoot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6 have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  CAS  PubMed  Google Scholar 

  • Anschutz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  CAS  PubMed  Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G (2015a) Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ 38(12):2747–2765

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Feng H, Hu Q, Qu H, Chen A, Yu L, Xu G (2015b) Improving rice tolerance to potassium deficiency by enhancing OsHAK16p:WOX11-controlled root development. Plant Biotechnol J 13:833–848

    Article  CAS  PubMed  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298

    Article  CAS  Google Scholar 

  • Coskun D, Britto DT, Li M, Oh S, Kronzucker HJ (2013) Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. Plant Physiol 162:496–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344

    Article  CAS  PubMed  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LG, RamírezAguilar SJ, González W, Thibaud JB, van Dongen JT, Dreyer I (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants—involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Glenn E, Brown JJ, Blumwald E (1999) Salt-tolerant mechanisms and crop potential of halophytes. CRC Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics 280:437–452

    Article  CAS  PubMed  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Xu G, Alli A, Yu L (2018) Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol 74:133–141

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt. Methods 25:402–405

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJ (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (1997) Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot 48:451–458

    Article  CAS  PubMed  Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot–root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol Plant 3:326–333

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Ródenas R, Chavanieu A, Rivero RM, Martinez V, Gaillard I, Rubio F (2016) Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives. Front Plant Sci 7:127

    PubMed  PubMed Central  Google Scholar 

  • Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada T, Nakayama H, Shinmyo A, Yoshida K (2008) Expression of OsHAK genes encoding potassium ion transporters in rice. Plant Biotechnol 25:241–245

    Article  CAS  Google Scholar 

  • Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol 153:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintero FJ, Garciadeblás B, Rodríguez-Navarro A (1996) The SAL1gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8:529–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ródenas R, García-Legaz MF, López-Gómez E, Martínez V, Rubio F, Ángeles Botella M (2017) NO3 , PO4 3− and SO4 2− deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato and Arabidopsis plants. Physiol Plantarum 160:410–424

    Article  CAS  Google Scholar 

  • Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    Article  PubMed  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  Google Scholar 

  • Rubio F, Santa-Maria GE, Rodriguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    Article  CAS  Google Scholar 

  • Rubio F, Nieves-Cordones M, Alemán F, Martínez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134:598–608

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Alemán F, Nieves-Cordones M, Martínez V (2010) Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake. Physiol Plant 139:220–228

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W (2015) The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38:2766–2779

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Adams E (2014) Transport, signalling and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56:231–249

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH (2014) Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65:381–393

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhu M, Shabala L, Zhou M, Shabala S (2015) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. J Integr Plant Biol 57:171–185

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National R&D Program for Transgenic Crops (2016ZX08009003), the National Natural Science Foundation (31872166), the Innovative Research Team Development Plan of the Ministry of Education of China (Grant no. IRT_17R56) and the Fundamental Research Funds for the Central Universities (Grant no. KYT201802). Junchao Yu from Noble Hills Academy at Shanghai New Hongqiao High School contributed to both pot and field assay of the transgenic rice lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Yu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2019_3194_MOESM1_ESM.doc

Supplementary material 1 (DOC 126 kb) Fig. S1 Time course of cell density of G19 transformed with pYES2 or OsHAK16 in liquid SDG medium (10 mM K) containing 0 (a), 200 (b) and 400 mM (c) NaCl. Fig. S2 Time course of cell density of K uptake-deficient yeast strain R5421 transformed with pYES2 or OsHAK16 in liquid phosphoric acid (AP) medium containing different levels of K (0.1, 1, 10 mM). Fig. S3 Relative expression of OsHAK1 and OsHAK5 in roots of OsHAK16 knockout mutants under different K level. Expression level of OsHAK16 in WT with +K treatment was used as calibrator. The Y axis is fold changes in gene expression relative to the calibrator. And the fold changes were labeled on the bars. +K: 1 mM K. −K: K free. OsHAK1 primers (accession number. AJ427970): F(5′–3′)-GTTGATGATGCTGATGTTGGAAG, R(5′–3′)-CCAACACTTTCAGCTGAAAC. OsHAK5 primers (accession number AK241580): F(5′–3′)-CATTGTGGACTATTTTGAAAGAA, R(5′–3′)-GGAGAACTACAGAAAAGCCAATC. Table S1. The primers for semi-quantitative and real-time quantitative PCR of OsHAK16. Table S2. Primers for construction of OsHAK16-eGFP and eGFP-OsHAK16. Table S3. The primers for identification of two homozygous mutant lines of OsHAK16 (KO). Table S4. Primers for OsHAK16-cDNA for construction of overexpression

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Tang, Q., Cai, J. et al. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta 250, 549–561 (2019). https://doi.org/10.1007/s00425-019-03194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03194-3

Keywords

Navigation