Skip to main content
Log in

Boron toxicity in higher plants: an update

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In this review, emphasis is given to the most recent updates about morpho-anatomical, physiological, biochemical and molecular responses adopted by plants to cope with B excess.

Abstract

Boron (B) is a unique micronutrient for plants given that the range of B concentration from its essentiality to toxicity is extremely narrow, and also because it occurs as an uncharged molecule (boric acid) which can pass lipid bilayers without any degree of controls, as occurs for other ionic nutrients. Boron frequently exceeds the plant’s requirement in arid and semiarid environments due to poor drainage, and in agricultural soils close to coastal areas due to the intrusion of B-rich seawater in fresh aquifer or because of dispersion of seawater aerosol. Global releases of elemental B through weathering, volcanic and geothermal processes are also relevant in enriching B concentration in some areas. Considerable progress has been made in understanding how plants react to B toxicity and relevant efforts have been made to investigate: (I) B uptake and in planta partitioning, (II) physiological, biochemical, and molecular changes induced by B excess, with particular emphasis to the effects on the photosynthetic process, the B-triggered oxidative stress and responses of the antioxidant apparatus to B toxicity, and finally (III) mechanisms of B tolerance. Recent findings addressing the effects of B toxicity are reviewed here, intending to clarify the effect of B excess and to propose new perspectives aimed at driving future researches on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agulhon H (1910) Emploi du bore comme engrais catalytique. CR Acad Sci 150:288–291

    CAS  Google Scholar 

  • Aibara I, Hirai T, Kasai K, Takano J, Onouchi H, Naito S, Fujiwara T, Miwa K (2018) Boron-dependent translational suppression of the borate exporter BOR1 contributes to the avoidance of boron toxicity. Plant Physiol 177(2):759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpaslan M, Gunes A (2001) Interactive effects of boron andsalinity stress on the growth, membrane permeability andmineral composition of tomato and cucumber plants. Plant Soil 236:123–128

    Article  CAS  Google Scholar 

  • Aquea F, Federici F, Moscoso C, Vega A, Jullian P, Haseloff J, Arce-Johnson P (2012) A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant Cell Environ 35(4):719–734

    Article  CAS  PubMed  Google Scholar 

  • Ardic M, Sekmen A, Tokur S, Ozdemir F, Turkan I (2009) Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biol 11(3):328–338

    Article  CAS  PubMed  Google Scholar 

  • Ayvaz M, Guven A, Blokhina O, Fagerstedt KV (2016) Boron stress, oxidative damage and antioxidant protection in potato cultivars (Solanum tuberosum L.). Acta Agric Scand B Soil Plant Sci 66(4):302–316

    CAS  Google Scholar 

  • Baboğlu M, Gezgi̇n S, Topal A, Sade B, Dural H (2004) Gypsophila sphaerocephala Fenzl ex Tchihat: a boron hyperaccumulator plant species that may phytoremediate soils with toxic B levels. Turk J Bot 28:273–278

    Google Scholar 

  • Bastías EI, González-Moro MB, González-Murua C (2004) Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron areavailable. Plant Soil 267:73–84

    Article  Google Scholar 

  • Bellaloui N, Brown PH, Dandekar AM (1999) Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol 119(2):735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Gal A, Shani U (2002) Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant Soil 247:211–221

    Article  CAS  Google Scholar 

  • Böeseken J (1949) The use of boric acid for the determination of the configuration of carbohydrates. Advances in carbohydrate chemistry. Academic Press, Cambridge, pp 189–210

    Google Scholar 

  • Bolaños L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912

    Article  CAS  Google Scholar 

  • Bonilla I, El-Hamdaoui A, Bolaños L (2004) Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 267:97–107

    Article  CAS  Google Scholar 

  • Brown PH, Hu H (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species. Ann Bot 77(5):497–506

    Article  CAS  Google Scholar 

  • Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193(1–2):85–101

    Article  CAS  Google Scholar 

  • Brown PH, Bellalou N, Hu H, Dandekar A (1999) Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol 119:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown P, Bellaloui N, Wimmer M, Bassil E, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V (2002) Boron in plant biology. Plant Biol 4(2):205–223

    Article  CAS  Google Scholar 

  • Camacho-Cristóbal JJ, Anzellotti D, González-Fontes A (2002) Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiol Biochem 40:997–1002

    Article  Google Scholar 

  • Camacho-Cristóbal JJ, Rexach J, González-Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50(10):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Cristóbal JJ, Navarro-Gochicoa MT, Rexach J, González-Fontes A, Herrera-Rodríguez MB (2018) Plant response to boron deficiency and boron use efficiency in crop plants. Plant micronutrient use efficiency. Academic Press, Cambridge, pp 109–121

    Google Scholar 

  • Cañon P, Aquea F, de la Guardia ARH, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant 149(3):329–339

    PubMed  Google Scholar 

  • Çatav ŞS, Genç TO, Oktay MK, Küçükakyüz K (2018) Effect of boron toxicity on oxidative stress and genotoxicity in wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 100(4):502–508

    Article  CAS  PubMed  Google Scholar 

  • Cervilla LM, Blasco B, Ríos JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100(4):747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervilla L, Blasco B, Ríos J, Rosales M, Rubio-Wilhelmi M, Sánchez-Rodríguez E, Romero L, Ruiz J (2009a) Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biol 11(5):671–677

    Article  CAS  PubMed  Google Scholar 

  • Cervilla LM, Rosales MA, Rubio-Wilhelmi MM, Sanchez-Rodrıguez E, Blasco B, Ríos JJ (2009b) Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Sci 176:545–552

    Article  CAS  PubMed  Google Scholar 

  • Cervilla LM, Blasco B, Rios JJ, Rosales MA, Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Romero L, Ruiz JM (2012) Parameters symptomatic for boron toxicity in leaves of tomato plants. J Bot. https://doi.org/10.1155/2012/726206

    Article  Google Scholar 

  • Chatzissavvidis C, Therios IN (2011) Boron in higher plants. In: Perkins GL (ed) Boron: compounds, production and application. Nova Science Publishers, New york, pp 147–176

    Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97(10):749–764

    Article  PubMed  Google Scholar 

  • Choi EY, Kolesik P, Mcneill A, Collins H, Zhang Q, Huynh BL, Graham R, Stangoulis J (2007) The mechanism of boron tolerance for maintenance of root growth in barley (Hordeum vulgare L.). Plant Cell Environ 30(8):984–993

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Brown P (2001) Permeability and channel-mediated transport of boric acid across plant membranes. An explanation for differential B uptake in plants: Plant Nutrition. Springer, Dordrecht, pp 190–191

    Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124(3):1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelstein M, Ben-Hur M, Cohen R, Burger Y, Ravina I (2005) Boron and salinity effects on grafted and non-graftedmelon plants. Plant Soil 269:273–284

    Article  CAS  Google Scholar 

  • Eichert T, Goldbach HE (2010) Transpiration rate affects the mobility of foliar-applied boron in Ricinus communis L. cv. Impala. Plant Soil 328(1–2):165–174

    Article  CAS  Google Scholar 

  • El-hamdaoui A, Redondo-Nieto M, Rivilla R, Bonilla I, Bolaños L (2003) Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum–pea (Pisum sativum) symbiosis and nodule development under salt stress. Plant Cell Environ 26:1003–1011

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007a) Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. J Plant Nutr 30(6):981–994

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Savasturk O, Gunes A (2007b) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic 114(1):5–10

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Pilbeam DJ, Gunes A (2008) Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity

  • Esim N, Tiryaki D, Karadagoglu O, Atici O (2013) Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots. Toxicol Ind Health 29(9):800–805

    Article  CAS  PubMed  Google Scholar 

  • Fang K, Zhang W, Xing Y, Zhang Q, Yang L, Cao Q, Qin L (2016) Boron toxicity causes multiple effects on Malus domestica pollen tube growth. Front Plant Sci 7:208

    PubMed  PubMed Central  Google Scholar 

  • Fedenko VS, Shemet SA, Landi M (2017) UV–vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: an overview of in vitro and in vivo techniques. J Plant Physiol 212:13–28

    Article  CAS  PubMed  Google Scholar 

  • Ferreyra RE, Aljaro AU, Ruiz RS, Rojas LP, Oster JD (1997) Behavior of 42 crop species grown in saline soils withhigh boron concentrations. Agric Water Manag 34:111–124

    Article  Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32(10):1357–1365

    Article  PubMed  Google Scholar 

  • Garcia POC, Rivero RM, Lopez-Lefebre LR, Sanchez E, Ruiz JM, Romero L (2001) Response of oxidative metabolism to the application of carbendazim plus boron in tobacco. Aust J Plant Physiol 28:801–806

    CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2002) Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Sci Plant Nutr 48(3):357–364

    Article  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Deposition of suberin in roots of soybean induced by excess boron. Plant Sci 168(2):397–405

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Goldbach HE, Wimmer MA (2007) Boron in plants and animals: is there a role beyond cell-wall structure? J Plant Nutr Soil Sci 170(1):39–48

    Article  CAS  Google Scholar 

  • Goldbach HE, Yu Q, Wingender R, Schulz M, Wimmer M, Findeklee P, Baluska F (2001) Rapid response reactions of roots to boron deprivation. J Plant Nutr Soil Sci 164:173–181

    Article  CAS  Google Scholar 

  • González-Fontes A, Rexach J, Navarro-Gochicoa MT, Herrera-Rodríguez MB, Beato VM, Maldonado JM, Camacho-Cristóbal JJ (2008) Is boron involved solely in structural roles in vascular plants? Plant Signal Behav 3(1):24–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Guidi L, Degl’Innocenti E, Carmassi G, Massa D, Pardossi A (2011) Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. Environ Exp Bot 73:57–63

    Article  CAS  Google Scholar 

  • Gunes A, Soylemezoglu G, Inal A, Bagci E, Coban S, Sahin O (2006) Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Sci Hortic 110(3):279–284

    Article  CAS  Google Scholar 

  • Guo P, Qi Y-P, Yang L-T, Ye X, Jiang H-X, Huang J-H, Chen L-S (2014) cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC Plant Biol 14(1):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta UC, Jame YW, Campbell CA, Leyshon AJ, Nicholaichuck W (1985) Boron toxicity and deficiency: a review. Can J Soil Sci 65:381–409

    Article  CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S, Tolrà R, Poschenrieder C (2013) Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants. Acta Physiol Plant 35(8):2373–2381

    Article  CAS  Google Scholar 

  • Han S, Tang N, Jiang H-X, Yang L-T, Li Y, Chen L-S (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176(1):143–153

    Article  CAS  Google Scholar 

  • Hansen CJ (1948) Influence of the rootstock on injury from excess boron in French (Agen) prune and President plum. J Am Soc Hortic Sci 51:239–244

    CAS  Google Scholar 

  • Hanson EJ (1991) Movement of boron out of tree fruit leaves. Hortscience 26(3):271–273

    Article  CAS  Google Scholar 

  • Hrmova M, Gilliham M (2018) Plants fighting back: to transport or not to transport, this is a structural question. Curr Opin Plant Biol 46:68–76

    Article  CAS  PubMed  Google Scholar 

  • HSDB (2003) Boron. Division of specialized information services. National Library of Medicine, Bethesda

    Google Scholar 

  • Hu H, Brown PH (1997) Absorption of boron by plant roots. Plant Soil 193:49–58

    Article  CAS  Google Scholar 

  • Hu H, Penn SG, Lebrilla CB, Brown PH (1997) Isolation and characterization of soluble boron complexes in higher plants (The mechanism of phloem mobility of boron). Plant Physiol 113(2):649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J-H, Cai Z-J, Wen S-X, Guo P, Ye X, Lin G-Z, Chen L-S (2014) Effects of boron toxicity on root and leaf anatomy in two Citrus species differing in boron tolerance. Trees 28(6):1653–1666

    Article  CAS  Google Scholar 

  • Julkowska MM (2018) Adjusting boron transport by two-step tuning of levels of the efflux transporter BOR1. Plant Physiol 177(2):439–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabay N, Güler E, Bryjak M (2010) Boron in seawater and methods for its separation—a review. Desalination 261(3):212–217

    Article  CAS  Google Scholar 

  • Karabal E, Yücel M, Öktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164(6):925–933

    Article  CAS  Google Scholar 

  • Karantzi A, Papadakis IE, Psychoyou M, Ioannou D (2016) Nutrient status of the banana cultivar ‘FHIA-01’as affected by boron excess. Acta Hortic 1139:399–404

    Article  Google Scholar 

  • Kaya C, Akram NA, Ashraf M (2018) Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. J Plant Growth Regul 37(4):1258–1266

    Article  CAS  Google Scholar 

  • Kaya C, Sarioğlu A, Akram NA, Ashraf M (2019) Thiourea-mediated nitric oxide production enhances tolerance to boron toxicity by reducing oxidative stress in bread wheat (Triticum aestivum L.) and durum wheat (Triticum durum Desf.) plants. J J Plant Growth Regul. https://doi.org/10.1007/s00344-019-09916-x

    Article  Google Scholar 

  • Kayihan DS, Kayihan C, Çiftçi YO (2019) Moderate level of toxic boron causes differential regulation of microRNAs related to jasmonate and ethylene metabolisms in Arabidopsis thaliana. Turk J Botany 43(2):167–172

    Article  CAS  Google Scholar 

  • Kayıhan C, Öz MT, Eyidoğan F, Yücel M, Öktem HA (2017) Physiological, biochemical, and transcriptomic responses to boron toxicity in leaf and root tissues of contrasting wheat cultivars. Plant Mol Biol Rep 35(1):97–109

    Article  CAS  Google Scholar 

  • Keren R, Bingham FT (1985) Boron in water, soils, and plants. Advances in soil science, vol 1. Springer, New York, pp 229–276. https://doi.org/10.1007/978-1-4612-5046-3_7

    Book  Google Scholar 

  • Kot FS (2009) Boron sources, speciation and its potential impact on health. Rev Environ Sci Biotechnol 8(1):3–28

    Article  CAS  Google Scholar 

  • Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012) Antioxidant and photosynthetic responses in plants under boron toxicity: a review. Am J Agric Biol Sci 7:255–270

    Article  CAS  Google Scholar 

  • Landi M, Pardossi A, Remorini D, Guidi L (2013a) Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ Exp Bot 85:64–75

    Article  CAS  Google Scholar 

  • Landi M, Remorini D, Pardossi A, Guidi L (2013b) Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J Plant Res 126(6):775–786

    Article  CAS  PubMed  Google Scholar 

  • Landi M, Remorini D, Pardossi A, Guidi L (2013c) Purple versus green-leafed Ocimum basilicum: which differences occur with regard to photosynthesis under boron toxicity? J Plant Nutr Soil Sci 176(6):942–951

    Article  CAS  Google Scholar 

  • Landi M, Guidi L, Pardossi A, Tattini M, Gould KS (2014) Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). Planta 240(5):941–953

    Article  CAS  PubMed  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    Article  CAS  Google Scholar 

  • Leaungthitikanchana S, Fujibe T, Tanaka M, Wang S, Sotta N, Takano J, Fujiwara T (2013) Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Plant Cell Physiol 54(7):1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Lehto T, Kallio E, Aphalo P (2000) Boron mobility in two coniferous species. Ann Bot 86(3):547–550

    Article  CAS  Google Scholar 

  • Lewis D (1980) Boron, lignification and the origin of vascular plants—a unified hypothesis. New Phytol 84(2):209–229

    Article  CAS  Google Scholar 

  • Lewis DH (2019) Boron: the essential element for vascular plants that never was. New Phytol 221(4):1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Jiang W, Zhang L, Li L (2000) Effects of boron ions on root growth and cell division of broadbean (Vicia faba L.). Isr J Plant Sci 48(1):47–51

    Article  CAS  Google Scholar 

  • Lo Piccolo E, Landi M, Pellegrini E, Agati G, Giordano C, Giordani T, Lorenzini G, Malorgio F, Massai R, Nali C (2018) Multiple consequences induced by epidermally-located anthocyanins in young, mature and senescent leaves of Prunus. Front Plant Sci 9:917

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Gómez E, San Juan MA, Diaz-Vivancos P, Mataix Beneyto J, Garcia-Legaz MF, Hernandez JA (2007) Effect of rootstocks grafting and boron on the antioxidant systems and salinity tolerance of loquat plants (Eriobotrya japonica L.). Environ Exp Bot 60:151–158

    Article  CAS  Google Scholar 

  • Lv Q, Wang L, Wang J-Z, Li P, Chen Y-L, Du J, He Y-K, Bao F (2017) SHB1/HY1 alleviates excess boron stress by increasing BOR4 expression level and maintaining boron homeostasis in Arabidopsis roots. Front Plant Sci 8:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Macho-Rivero MA, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Müller M, Munné-Bosch S, González-Fontes A (2017) Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiol Plant 160:21–32

    Article  CAS  PubMed  Google Scholar 

  • Macho-Rivero MA, Herrera-Rodríguez MB, Brejcha R, Schäffner AR, Tanaka N, Fujiwara T, González-Fontes A, Camacho-Cristóbal JJ (2018) Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major pip aquaporin genes. Plant Cell Physiol 59(4):841–849

    Article  CAS  Google Scholar 

  • Mahboobi H, Yücel M, Öktem HA (2002) Nitrate reductase and glutamate dehydrogenase activities of resistant and sensitive cultivars of wheat and barley under boron toxicity. J Plant Nutr 25(8):1829–1837

    Article  CAS  Google Scholar 

  • Marcar NE, Guo J, Crawford DF (1999) Response of Eucalyptus camaldulensis Dehnh., E. globulus Labill. ssp. globulus and E. grandis W. Hill to excess boron andsodium chloride. Plant Soil 208:251–257

    Article  CAS  Google Scholar 

  • Martinez-Ballesta MC, Bastia E, Zhu C, Schaffner AR, Gonzàlez-Moro B, Gonzàlez-Murua C, Carvajal M (2008) Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiol Plantarum 132:479–490

    Article  CAS  Google Scholar 

  • Martinez-Cuenca MR, Martinez-Alcantara B, Quiñones A, Ruiz M, Iglesias DJ, Primo-Millo E, Forner-Giner MA (2015) Physiological and molecular responses to excess boron in Citrus macrophylla W. PLoS One 10(7):e0134372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318(5855):1417

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Wakuta S, Takada S, Ide K, Takano J, Naito S, Omori H, Matsunaga T, Fujiwara T (2013) Roles of BOR2, a boron exporter, in crosslinking of rhamnogalacturonan II and root elongation under boron limitation in Arabidopsis thaliana. Plant Physiol 163(4):1699–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa K, Aibara I, Fujiwara T (2014) Arabidopsis thaliana BOR4 is upregulated under high boron conditions and confers tolerance to high boron. Soil Sci Plant Nutr 60(3):349–355

    Article  CAS  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56(1):54–62

    Article  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep 6:21640. https://doi.org/10.1038/srep21640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nable RO (1988) Resistance to boron toxicity amongst several barley and wheat cultivars: a preliminary examination of the resistance mechanism. Plant Soil 112:45–57

    Article  CAS  Google Scholar 

  • Nable RO, Lance RCM, Cartwright B (1990) Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Annal Bot 66:83–90

    Article  CAS  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Nagarajan Y, Rongala J, Luang S, Singh A, Shadiac N, Hayes J, Sutton T, Gilliham M, Tyerman SD, McPhee G, Voelcker NH, Mertens HDT, Kirby NM, Lee JG, Yingling YG, Hrmova M (2016) A barley efflux transporter operates in a Na+-dependent manner, as revealed through a multidisciplinary platform. Plant Cell 28:202–218

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19(8):2624–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholaichuk W, Leyshon AJ, Jame YW, Campbell CA (1988) Boron and salinity survey of irrigation projects and theboron adsorption characteristics of some saskatchewansoils. Can J Soil Sci 68:77–90

    Article  CAS  Google Scholar 

  • Noguchi K, Yasumori M, Imai T, Naito S, Matsunaga T, Oda H, Hayashi H, Chino M, Fujiwara T (1997) bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol 115(3):901–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochiai K, Shimizu A, Okumoto Y, Fujiwara T, Matoh T (2011) Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice (Oryza sativa L.). Plant Physiol 156(3):1457–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill MA, Warrenfeltz KK, Pellerin P, Doco T, Darvill AG, Albersheim P (1996) Rhamnogalacturonan-II: a pectic polysaccharide in the walls of growing plant cell, form a dimer that is covalently cross-linked by a borate ester: in vitro conditions for the formation and hydrolysis of the dimer. J Biol Chem 271:22923–22930

    Article  PubMed  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Wu X, Gao Y, Wu Y, Yao Y (2019) Analysis of physiological responses and expression profiling of boron transporter-like genes in response to excess boron in Populus russkii. Chemosphere 224:369–378

    Article  CAS  PubMed  Google Scholar 

  • Öz MT, Yilmaz R, Eyidoğan F, De Graaff L, Yücel M, Öktem HA (2009) Microarray analysis of late response to boron toxicity in barley (Hordeum vulgare L.) leaves. Turk J Agric For 33(2):191–202

    Google Scholar 

  • Öztürk SE, Göktay M, Has C, Babaoğlu M, Allmer J, Doğanlar S, Frary A (2018) Transcriptomic analysis of boron hyperaccumulation mechanisms in Puccinellia distans. Chemosphere 199:390–401

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37(6):389–397

    Article  CAS  PubMed  Google Scholar 

  • Papadakis IE (2016) The timeless contribution of rootstocks towards successful horticultural farming: from ancient times to the climate change era. Am J Agric Biol Sci 11(4):137–141

    Article  Google Scholar 

  • Papadakis I, Dimassi K, Therios I (2003) Response of two citrus genotypes to six boron concentrations: concentration and distribution of nutrients, total absorption, and nutrient use efficiency. Aust J Agric Res 54(6):571–580

    Article  CAS  Google Scholar 

  • Papadakis I, Dimassi K, Bosabalidis A, Therios I, Patakas A, Giannakoula A (2004a) Effects of B excess on some physiological and anatomical parameters of ‘Navelina’orange plants grafted on two rootstocks. Environ Exp Bot 51(3):247–257

    Article  CAS  Google Scholar 

  • Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A (2004b) Boron toxicity in ‘Clementine’mandarin plants grafted on two rootstocks. Plant Sci 166(2):539–547

    Article  CAS  Google Scholar 

  • Papadakis I, Tsiantas P, Gerogiannis O, Vemmos S, Psychoyou M (2014) Photosynthetic activity and concentration of chlorophylls, carotenoids, hydrogen peroxide and malondialdehyde in loquat seedlings growing under excess boron conditions. Acta Hortic 1092:221–226

    Google Scholar 

  • Papadakis IE, Tsiantas PI, Tsaniklidis G, Landi M, Psychoyou M, Fasseas C (2018) Changes in sugar metabolism associated to stem bark thickening partially assist young tissues of Eriobotrya japonica seedlings under boron stress. J Plant Physiol 231:337–345

    Article  CAS  PubMed  Google Scholar 

  • Pardossi A, Romani M, Carmassi G, Guidi L, Landi M, Incrocci L, Maggini R, Puccinelli M, Vacca W, Ziliani M (2015) Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant Soil 395(1–2):375–389

    Article  CAS  Google Scholar 

  • Pawlowski ML, Helfenstein J, Frossard E, Hartman GL (2019) Boron and zinc deficiencies and toxicities and their interactions with other nutrients in soybean roots, leaves, and seeds. J Plant Nutr 42(6):634–649

    Article  CAS  Google Scholar 

  • Pennisi M, Gonfiantini R, Grassi S, Squarci P (2006) The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Appl Geochem 21:643–655

    Article  CAS  Google Scholar 

  • Perica S, Bellaloui N, Greve C, Hu H, Brown PH (2001) Boron transport and soluble carbohydrate concentrations in olive. J Am Soc Hortic Sci 126(3):291–296

    Article  CAS  Google Scholar 

  • Picchioni G, Weinbaum S, Brown P (1995) Retention and the kinetics of uptake and export of foliage-applied, labeled boron by apple, pear, prune, and sweet cherry leaves. J Am Soc Hortic Sci 120(1):28–35

    Article  CAS  Google Scholar 

  • Picchioni GA, Karaca H, Boyse LG, McCaslin BD, Herrera EA (2000) Salinity, boron, and irrigated pecan productivityalong New Mexico’s Rio Grande Basin. J Environ Qual 29:955–963

    Article  CAS  Google Scholar 

  • Princi MP, Lupini A, Araniti F, Longo C, Mauceri A, Sunseri F, Abenavoli MR (2016a) Boron toxicity and tolerance in plants: recent advances and future perspectives. Plant metal interaction. Elsevier, Amsterdam, pp 115–147

    Google Scholar 

  • Princi MP, Lupini A, Longo C, Miller AJ, Sunseri F, Abenavoli MR (2016b) Long-and short-term effects of boron excess to root form and function in two tomato genotypes. Plant Physiol Biochem 109:9–19

    Article  CAS  PubMed  Google Scholar 

  • Ralston NVC, Hunt CD (2001) Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis. Biochim Biophysi Acta 1527:20–30

    Article  CAS  Google Scholar 

  • Rámila CD, Leiva ED, Bonilla CA, Pastén PA, Pizarro GE (2015) Boron accumulation in Puccinellia frigida, an extremely tolerant and promising species for boron phytoremediation. J Geochem Explor 150:25–34

    Article  CAS  Google Scholar 

  • Raven J (1980) Short-and long-distance transport of boric acid in plants. New Phytol 84(2):231–249

    Article  CAS  Google Scholar 

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48(12):1673–1678

    Article  CAS  PubMed  Google Scholar 

  • Reid R (2010) Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci 178(1):9–11

    Article  CAS  Google Scholar 

  • Reid R (2014) Understanding the boron transport network in plants. Plant Soil 385(1–2):1–13

    Article  CAS  Google Scholar 

  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 27(11):1405–1414

    Article  CAS  Google Scholar 

  • Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A (2006) An investigation of boron toxicity in barley using metabolomics. Plant Physiol 142(3):1087–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011) Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23(9):3533–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakcali MS, Kekec G, Uzonur I, Alpsoy L, Tombuloglu H (2015) Randomly amplified polymorphic-DNA analysis for detecting genotoxic effects of Boron on maize (Zea mays L.). Toxicol Ind Health 31(8):712–720

    Article  CAS  PubMed  Google Scholar 

  • Samet H, Çıkılı Y (2018) Response of purslane (Portulaca oleracea L.) to excess boron and salinity: physiological approach. Russ J Plant Physiol. https://doi.org/10.1134/S1021443719020110

    Article  Google Scholar 

  • Sang W, Huang Z-R, Qi Y-P, Yang L-T, Guo P, Chen L-S (2015) An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics. J Proteomics 123:128–146

    Article  CAS  PubMed  Google Scholar 

  • Sang W, Huang Z-R, Yang L-T, Guo P, Ye X, Chen L-S (2017) Effects of high toxic boron concentration on protein profiles in roots of two citrus species differing in boron-tolerance revealed by a 2-DE based MS approach. Front Plant Sci 8:180

    PubMed  PubMed Central  Google Scholar 

  • Sarabandi M, Farokhzad A, Mandoulakani BA, Ghasemzadeh R (2019) Biochemical and gene expression responses of two Iranian grape cultivars to foliar application of methyl jasmonate under boron toxicity conditions. Scientia Hortic 249:355–363

    Article  CAS  Google Scholar 

  • Sarafi E, Siomos A, Tsouvaltzis P, Therios I, Chatzissavvidis C (2018) Boron toxicity effects on the concentration of pigments, carbohydrates and nutrient elements in six non-grafted pepper cultivars (Capsicum annuum L.). Indian J Plant Physiol 23(3):474–485

    Article  CAS  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153(4):1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A, Wu X, Ullah A, Fahad S, Muhammad R, Yan L, Jiang C (2017) Deficiency and toxicity of boron: alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicol Environ Saf 145:575–582

    Article  CAS  PubMed  Google Scholar 

  • Shireen F, Nawaz MA, Chen C, Zhang Q, Zheng Z, Sohail H, Sun J, Cao H, Huang Y, Bie Z (2018) Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int J Mol Sci 19(7):1856. https://doi.org/10.3390/ijms19071856

    Article  CAS  PubMed Central  Google Scholar 

  • Simón-Grao S, Nieves M, Cámara-Zapata JM, Martínez-Nicolás JJ, Rivero RM, Fernández-Zapata JC, García-Sánchez F (2019a) The Forner Alcaide no. 5 citrus genotype shows a different physiological response to the excess of boron in the irrigation water in relation to its two genotype progenitors. Sci Hortic 245:19–28

    Article  CAS  Google Scholar 

  • Simón-Grao S, Nieves M, Martínez-Nicolás JJ, Alfosea-Simón M, Cámara-Zapata JM, Fernández-Zapata JC, García-Sánchez F (2019b) Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots. Ecotoxicol Environ Saf 173:322–330

    Article  CAS  PubMed  Google Scholar 

  • Sotiras M, Papadakis I, Landi M, Tsaniklidis G, Tsiantas P, Psychoyou M (2019) Allocation pattern, photosynthetic performance and sugar metabolism in hydroponically grown seedlings of loquat (Eriobotrya japonica Lindl.) subjected to salinity. Photosynthetica 57(1):258–267

    Article  Google Scholar 

  • Sotiropoulos TE, Therios IN, Dimassi KN, Bosabalidis A, Kofidis G (2002) Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. J Plant Nutr 25(6):1249–1261

    Article  CAS  Google Scholar 

  • Sotiropoulos TE, Fotopoulos S, Dimassi KN, Tsirakoglou V, Therios IN (2006) Response of the pear rootstock to boron and salinity in vitro. Biol Plant 50:779

    Article  CAS  Google Scholar 

  • Stangoulis JCR, Brown PH, Bellaloui N, Reid RJ, Graham RD (2001) The efficiency of boron utilization in canola. Austr J Plant Physiol 28:1109–1114

    CAS  Google Scholar 

  • Stangoulis J, Tate M, Graham R, Bucknall M, Palmer L, Boughton B, Reid R (2010) The mechanism of boron mobility in wheat and canola phloem. Plant Physiol 153(2):876–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318(5855):1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420(6913):337

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci USA 102(34):12276–12281

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13(8):451–457

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch 456:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Uratsu SL, Dandekar AM (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol 36(3):525–532

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu H, Tombuloglu G, Sakcali MS, Turkan A, Hakeem KR, Alharby HF, Fahd S, Abdul WM (2017) Proteomic analysis of naturally occurring boron tolerant plant Gypsophila sphaerocephala L. in response to high boron concentration. J Plant Physiol 216:212–217

    Article  CAS  PubMed  Google Scholar 

  • Van Goor BJ, Van Lune P (1980) Redistribution of potassium, boron, iron, magnesium and calcium in apple trees determined by an indirect method. Physiol Plant 48(1):21–26

    Article  Google Scholar 

  • Voxeur A, Fry SC (2014) Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. Plant J 79(1):139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakuta S, Mineta K, Amano T, Toyoda A, Fujiwara T, Naito S, Takano J (2015) Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1. Plant Cell Physiol 56(5):852–862

    Article  CAS  PubMed  Google Scholar 

  • Wakuta S, Fujikawa T, Naito S, Takano J (2016) Tolerance to excess-boron conditions acquired by stabilization of a BOR1 variant with weak polarity in Arabidopsis. Front Cell Dev Biol 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Yang C, Pan Z, Liu Y, Peng S (2015) Boron deficiency in woody plants: various responses and tolerance mechanisms. Front Plant Sci 6:916. https://doi.org/10.3389/fpls.2015.00916

    Article  PubMed  PubMed Central  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the broad been and certain other plants. Ann Bot 37:629–672

    Article  Google Scholar 

  • Whang JZ, Tao ST, Qi KJ, Wu J, Wu HQ, Zhang SL (2011) Changes in photosynthetic and antioxidative system of pear leaves to boron toxicity. Afr J Biotech 10:19693–19700

    Google Scholar 

  • WHO (1998) Environmental health criteria. World Health Organization, Geneva

    Google Scholar 

  • Will S, Eichert T, Fernández V, Möhring J, Müller T, Römheld V (2011) Absorption and mobility of foliar-applied boron in soybean as affected by plant boron status and application as a polyol complex. Plant Soil 344(1–2):283–293

    Article  CAS  Google Scholar 

  • Wimmer MA, Muhling KH, Lauchli A, Brown PH, Goldbach HE (2003) The interaction between salinity and borontoxicity affects the subcellular distribution of ions andproteins in wheat leaves. Plant Cell Environ 26:1267–1274

    Article  CAS  Google Scholar 

  • Woodbridge C (1955) The boron requirements of stone fruit trees. Can J Agric Sci 35(3):282–286

    CAS  Google Scholar 

  • Woods GW (1996) Review of possible boron speciation relating to its essentiality. J Trace Elem Exp Med 9:153–163

    Article  CAS  Google Scholar 

  • Wu X, Lu X, Riaz M, Yan L, Jiang C (2018) Boron deficiency and toxicity altered the subcellular structure and cell wall composition architecture in two citrus rootstocks. Sci Hortic 238:147–154

    Article  CAS  Google Scholar 

  • Yermiyahu U, Zilberman J, Ben-Gal A, Keren R (2006) Bioavailability and toxicity of residual boron originatingfrom saline irrigation water. World Congress of Soil Science, Philadelphia

    Google Scholar 

  • Yermiyahu U, Ben-Gal A, Keren R, Reid RJ (2008) Combined effect of salinity and boron on plant growth and yield. Plant Soil 304:73–87

    Article  CAS  Google Scholar 

  • Yıldırım K, Uylaş S (2016) Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification. Plant Physiol Biochem 109:146–155

    Article  CAS  PubMed  Google Scholar 

  • You CF, Spivack AJ, Gieskes JM, Rosenbauer R, Bischoff JL (1995) Experimental study of boron geochemistry: implications for fluid processes in subduction zones. Geochim Cosmochim Acta 59:2435–2442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis E. Papadakis.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landi, M., Margaritopoulou, T., Papadakis, I.E. et al. Boron toxicity in higher plants: an update. Planta 250, 1011–1032 (2019). https://doi.org/10.1007/s00425-019-03220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03220-4

Keywords

Navigation