Skip to main content

Advertisement

Log in

Ewing sarcoma and Ewing-like tumors

  • Review Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Ewing sarcoma (ES) and Ewing-like sarcomas are highly aggressive round cell mesenchymal neoplasms, most often occurring in children and young adults. The identification of novel molecular alterations has greatly contributed to a profound reappraisal of classification, to the extent that the category of undifferentiated round cell sarcoma has significantly shrunk. In fact, in addition to Ewing sarcoma, we currently recognize three main categories: round cell sarcomas with EWSR1 gene fusion with non-ETS family members, CIC-rearranged sarcomas, and BCOR-rearranged sarcomas. Interestingly, despite significant morphologic overlap, most of these entities tend to exhibit morphologic features predictive of the underlying molecular alteration. Ewing sarcoma is the prototype of round cell sarcoma whereas in CIC sarcomas, focal pleomorphism and epithelioid morphology can predominate. BCOR sarcomas often exhibit a spindled neoplastic cell population. NFATC2 sarcoma may exhibit remarkable epithelioid features, and PATZ1 sarcomas often feature a sclerotic background. The differential diagnosis for these tumors is rather broad, and among round cell sarcomas includes alveolar rhabdomyosarcoma, desmoplastic small round cell tumor, poorly differentiated round cell synovial sarcoma, small cell osteosarcoma, and mesenchymal chondrosarcoma. A combination of morphologic, immunohistochemical, and molecular findings allows accurate classification in most cases. A granular diagnostic approach to Ewing sarcoma and Ewing-like sarcomas is justified by significant differences in terms of both response to chemotherapy and overall survival. As all these entities are in part defined by specific fusion genes, a molecular diagnostic approach based on NGS technology should be considered. In consideration of the extreme rarity of many of these tumor entities, referral to expert rare cancer centers or to rare cancer networks represents the best strategy in order to minimize diagnostic inaccuracy, and allow proper patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Folpe AL, Goldblum JR, Rubin BP et al (2005) Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol 29:1025–1033

    PubMed  Google Scholar 

  2. Jimenez RE, Folpe AL, Lapham RL et al (2002) Primary Ewing’s sarcoma/primitive neuroectodermal tumor of the kidney: a clinicopathologic and immunohistochemical analysis of 11 cases. Am J Surg Pathol 26:320–327

    PubMed  Google Scholar 

  3. Komforti MK, Sokolovskaya E, D'Agostino CA, Benayed R, Thomas RM (2018) Extra-osseous Ewing sarcoma of the pancreas: case report with radiologic, pathologic, and molecular correlation, and brief review of the literature. Virchows Arch 473:361–369

    CAS  PubMed  Google Scholar 

  4. Dedeurwaerdere F, Giannini C, Sciot R et al (2002) Primary peripheral PNET/Ewing’s sarcoma of the dura: a clinicopathologic entity distinct from central PNET. Mod Pathol 15:673–678

    PubMed  Google Scholar 

  5. Hasegawa SL, Davison JM, Rutten A, Fletcher JA, Fletcher CD (1998) Primary cutaneous Ewing’s sarcoma: immunophenotypic and molecular cytogenetic evaluation of five cases. Am J Surg Pathol 22:310–318

    CAS  PubMed  Google Scholar 

  6. Wang WL, Patel NR, Caragea M, Hogendoorn PC, López-Terrada D, Hornick JL, Lazar AJ (2012) Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 25:1378–1383

    CAS  PubMed  Google Scholar 

  7. Charville GW, Wang WL, Ingram DR, Roy A, Thomas D, Patel RM, Hornick JL, van de Rijn M, Lazar AJ (2017) EWSR1 fusion proteins mediate PAX7 expression in Ewing sarcoma. Mod Pathol 30:1312–1320

    CAS  PubMed  Google Scholar 

  8. Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol 29:370–380

    CAS  PubMed  Google Scholar 

  9. Russell-Goldman E, Hornick JL, Qian X, Jo VY (2018) NKX2.2 immunohistochemistry in the distinction of Ewing sarcoma from cytomorphologic mimics: diagnostic utility and pitfalls. Cancer Cytopathol 126:942–949

    CAS  PubMed  Google Scholar 

  10. Aurias A, Rimbaut C, Buffe D, Zucker JM, Mazabraud A (1984) Translocation involving chromosome 22 in Ewing’s sarcoma. A cytogenetic study of four fresh tumors. Cancer Genet Cytogenet 12:21–25

    CAS  PubMed  Google Scholar 

  11. Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT (1994) A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 6:146–151

    CAS  PubMed  Google Scholar 

  12. Jeon IS, Davis JN, Braun BS et al (1995) A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10:1229–1234

    CAS  PubMed  Google Scholar 

  13. Ishida S, Yoshida K, Kaneko Y, Tanaka Y, Sasaki Y, Urano F, Umezawa A, Hata J, Fujinaga K (1998) The genomic breakpoint and chimeric transcripts in the EWSR1-ETV4/E1AF gene fusion in Ewing sarcoma. Cytogenet Cell Genet 82:278–283

    CAS  PubMed  Google Scholar 

  14. Wang L, Bhargava R, Zheng T et al (2007) Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of a novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn 9:498–509

    PubMed  PubMed Central  Google Scholar 

  15. Casali PG, Bielack S, Abecassis N et al (2018) ESMO guidelines committee, PaedCan and ERN EURACAN. Bone sarcomas: ESMO-PaedCan-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29(Suppl 4):iv79–iv95

    CAS  PubMed  Google Scholar 

  16. Casali PG, Abecassis N, Aro HT et al (2018) ESMO guidelines committee and EURACAN. Soft tissue and visceral sarcomas: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29(Suppl 4):iv51–iv67

    CAS  PubMed  Google Scholar 

  17. Picci P, Rougraff BT, Bacci G, Neff JR, Sangiorgi L, Cazzola A, Baldini N, Ferrari S, Mercuri M, Ruggieri P (1993) Prognostic significance of histopathologic response to chemotherapy in nonmetastatic Ewing’s sarcoma of the extremities. J Clin Oncol 11:1763–1769

    CAS  PubMed  Google Scholar 

  18. Antonescu C (2014) Round cell sarcomas beyond Ewing: emerging entities. Histopathology. 64:26–37

    PubMed  Google Scholar 

  19. Sadri N, Barroeta J, Pack SD, Abdullaev Z, Chatterjee B, Puthiyaveettil R, Brooks JS, Barr FG, Zhang PJ (2014) Malignant round cell tumor of bone with EWSR1-NFATC2 gene fusion. Virchows Arch 465:233–239

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Koelsche C, Kriegsmann M, Kommoss FKF, Stichel D, Kriegsmann K, Vokuhl C, Grünewald TGP, Romero-Pérez L, Kirchner T, de Alava E, Diaz-Martin J, Hartmann W, Baumhoer D, Antonescu CR, Szuhai K, Flucke U, Dirksen U, Pfister SM, Jones DTW, Mechtersheimer G, von Deimling A (2019) DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1-NFATc2 fusion from Ewing sarcoma. J Cancer Res Clin Oncol 145:1273–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chougule A, Taylor MS, Nardi V, Chebib I, Cote GM, Choy E, Nielsen GP, Deshpande V (2019) Spindle and round cell sarcoma with EWSR1-PATZ1 gene fusion: a sarcoma with polyphenotypic differentiation. Am J Surg Pathol 43:220–228

    PubMed  PubMed Central  Google Scholar 

  22. Bridge JA, Sumegi J, Druta M, et al (2019) Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod Pathol 32(11):1593–1604

  23. Romeo S, Bovée JV, Kroon HM, Tirabosco R, Natali C, Zanatta L, Sciot R, Mertens F, Athanasou N, Alberghini M, Szuhai K, Hogendoorn PC, Dei Tos AP (2012) Malignant fibrous histiocytoma and fibrosarcoma of bone: a re-assessment in the light of currently employed morphological, immunohistochemical and molecular approaches. Virchows Arch 461:561–570

    CAS  PubMed  Google Scholar 

  24. Wang GY, Thomas DG, Davis JL et al (2019) EWSR1-NFATC2 translocation-associated sarcoma clinicopathologic findings in a rare aggressive primary bone or soft tissue tumor. Am J Surg Pathol 43:1112–1122

    PubMed  Google Scholar 

  25. Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM, Antonescu CR (2012) High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosom Cancer 51:207–218

    CAS  PubMed  Google Scholar 

  26. Gambarotti M, Benini S, Gamberi G et al (2016) CIC-DUX4 fusion-positive round-cell sarcomas of soft tissue and bone: a single-institution morphological and molecular analysis of seven cases. Histopathology. 69:624–634

    PubMed  Google Scholar 

  27. Antonescu CR, Owosho AA, Zhang L, Chen S, Deniz K, Huryn JM, Kao YC, Huang SC, Singer S, Tap W, Schaefer IM, Fletcher CD (2017) Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol 41:941–949

    PubMed  PubMed Central  Google Scholar 

  28. Yoshimoto T, Tanaka M, Homme M, Yamazaki Y, Takazawa Y, Antonescu CR, Nakamura T (2017) CIC-DUX4 induces small round cell sarcomas distinct from Ewing sarcoma. Cancer Res 77:2927–2937

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sugita S, Arai Y, Tonooka A et al (2014) A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol 38:1571–1576

    PubMed  Google Scholar 

  30. Sugita S, Arai Y, Aoyama T et al (2017) NUTM2A-CIC fusion small round cell sarcoma: a genetically distinct variant of CIC-rearranged sarcoma. Hum Pathol 65:225–230

    CAS  PubMed  Google Scholar 

  31. Le Loarer F, Pissaloux D, Watson S et al (2019) Clinicopathologic features of CIC-NUTM1 sarcomas, a new molecular variant of the family of CIC-fused sarcomas. Am J Surg Pathol 43:268–276

    Google Scholar 

  32. Kawamura-Saito M, Yamazaki Y, Kaneko K et al (2006) Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet 15:2125–2137

    CAS  PubMed  Google Scholar 

  33. Richkind KE, Romansky SG, Finklestein JZ (1996) t(4;19)(q35;q13.1): a recurrent change in primitive mesenchymal tumors? Cancer Genet Cytogenet 87:71–74

    CAS  PubMed  Google Scholar 

  34. Siegele B, Roberts J, Black JO, Rudzinski E, Vargas SO, Galambos C (2017) DUX4 immunohistochemistry is a highly sensitive and specific marker for CIC-DUX4 fusion-positive round cell tumor. Am J Surg Pathol 41:423–429

    PubMed  Google Scholar 

  35. Hung YP, Fletcher CD, Hornick JL (2016) Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol 29:1324–1334

    CAS  PubMed  Google Scholar 

  36. Le Guellec S, Velasco V, Pérot G et al (2016) ETV4 is a useful marker for the diagnosis of CIC-rearranged undifferentiated round-cell sarcomas: a study of 127 cases including mimicking lesions. Mod Pathol 29:1523–1531

    PubMed  Google Scholar 

  37. Smith SC, Buehler D, Choi EY et al (2015) CIC-DUX sarcomas demonstrate frequent MYC amplification and ETS-family transcription factor expression. Mod Pathol 28:57–68

    CAS  PubMed  Google Scholar 

  38. Yoshida A, Arai Y, Kobayashi E et al (2017) CIC break-apart fluorescence in-situ hybridization misses a subset of CIC-DUX4 sarcomas: a clinicopathological and molecular study. Histopathology. 71:461–469

    PubMed  Google Scholar 

  39. Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, Perrin V, Coindre JM, Delattre O (2012) A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44:461–466

    CAS  PubMed  Google Scholar 

  40. Kao YC, Owosho AA, Sung YS, Zhang L, Fujisawa Y, Lee JC, Wexler L, Argani P, Swanson D, Dickson BC, Fletcher CDM, Antonescu CR (2018) BCOR-CCNB3 fusion positive sarcomas: a clinicopathologic and molecular analysis of 36 cases with comparison to morphologic spectrum and clinical behavior of other round cell sarcomas. Am J Surg Pathol 42:604–615

    PubMed  PubMed Central  Google Scholar 

  41. Shibayama T, Okamoto T, Nakashima Y et al (2015) Screening of BCOR-CCNB3 sarcoma using immunohistochemistry for CCNB3: a clinicopathological report of three pediatric cases. Pathol Int 65:410–414

    PubMed  Google Scholar 

  42. Matsuyama A, Shiba E, Umekita Y et al (2017) Clinicopathologic diversity of undifferentiated sarcoma with BCOR-CCNB3 fusion: analysis of 11 cases with a reappraisal of the utility of immunohistochemistry for BCOR and CCNB3. Am J Surg Pathol 41:1713–1721

    PubMed  Google Scholar 

  43. Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P, Agaram NP, Zin A, Alaggio R, Antonescu CR (2016) BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol 40:1670–1678

    PubMed  PubMed Central  Google Scholar 

  44. Creytens D (2017) SATB2 and TLE1 expression in BCOR-CCNB3 (Ewing-like) sarcoma, mimicking small cell osteosarcoma and poorly differentiated synovial sarcoma. Appl Immunohistochem Mol Morphol. https://doi.org/10.1097/PAI.0000000000000601

  45. Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S, Richter GH, Fletcher CD, Antonescu CR (2016) Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am J Surg Pathol 40:433–442

    PubMed  PubMed Central  Google Scholar 

  46. Kao YC, Sung YS, Zhang L, Huang SC, Argani P, Chung CT, Graf NS, Wright DC, Kellie SJ, Agaram NP, Ludwig K, Zin A, Alaggio R, Antonescu CR (2016) Recurrent BCOR internal tandem duplication and YWHAE-NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy: overlapping genetic features with clear cell sarcoma of kidney. Am J Surg Pathol 40:1009–1020

    PubMed  PubMed Central  Google Scholar 

  47. Puls F, Niblett A, Marland G, Gaston CL, Douis H, Mangham DC, Sumathi VP, Kindblom LG (2014) BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am J Surg Pathol 38:1307–1318

    PubMed  Google Scholar 

  48. Missiaglia E, Williamson D, Chisholm J, Wirapati P, Pierron G, Petel F, Concordet JP, Thway K, Oberlin O, Pritchard-Jones K, Delattre O, Delorenzi M, Shipley J (2012) PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 30:1670–1677

    PubMed  Google Scholar 

  49. Sawyer JR, Tryka AF, Lewis JM (1992) A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol 16:411–416

    CAS  PubMed  Google Scholar 

  50. Clark J, Rocques PJ, Crew AJ et al (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508

    CAS  PubMed  Google Scholar 

  51. Wang L, Motoi T, Khanin R, Olshen A, Mertens F, Bridge J, Dal Cin P, Antonescu CR, Singer S, Hameed M, Bovee JV, Hogendoorn PC, Socci N, Ladanyi M (2012) Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosom Cancer 51:127–139

    CAS  PubMed  Google Scholar 

  52. Righi A, Gambarotti M, Longo S, Benini S, Gamberi G, Cocchi S, Vanel D, Picci P, Bertoni F, Simoni A, Franchi A, Dei Tos AP (2015) Small cell osteosarcoma:clinicopathologic, immunohistochemical, and molecular analysis of 36 cases. Am J Surg Pathol 39:691–699

    PubMed  Google Scholar 

  53. Scarpa A, Chang DK, Nones K et al (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543:65–71

    CAS  PubMed  Google Scholar 

  54. Chen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR (2016) Ewing sarcoma with ERG gene rearrangements: a molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosom Cancer 55:340–349

    CAS  PubMed  Google Scholar 

  55. Kao YC, Sung YS, Chen CL, Zhang L, Dickson BC, Swanson D, Vaiyapuri S, Latif F, Alholle A, Huang SC, Hornick JL, Antonescu CR (2017) ETV transcriptional upregulation is more reliable than RNA sequencing algorithms and FISH in diagnosing round cell sarcomas with CIC gene rearrangements. Genes Chromosom Cancer 56:501–510

    CAS  PubMed  Google Scholar 

Download references

Contribution statements

Marta Sbaraglia, Angelo Dei Tos, Marco Gambarotti, and Alberto Righi all contributed to the design of the manuscript, to the writing and corrections, and to the production of iconography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo P. Dei Tos.

Ethics declarations

We herein affirm that the manuscript fully complies with ethical standards.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbaraglia, M., Righi, A., Gambarotti, M. et al. Ewing sarcoma and Ewing-like tumors. Virchows Arch 476, 109–119 (2020). https://doi.org/10.1007/s00428-019-02720-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-019-02720-8

Keywords

Navigation