Skip to main content

Advertisement

Log in

Defensive behaviors and prosencephalic neurogenesis in pigeons (Columba livia) are affected by environmental enrichment in adulthood

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neurogenesis in the adult brain appears to be phylogenetically conserved across the animal kingdom. In pigeons and other adult non-oscine birds, immature neurons are observed in several prosencephalic areas, suggesting that neurogenesis may participate in the control of different behaviors. The mechanisms controlling neurogenesis and its relevance to defensive behaviors in non-oscine birds remain elusive. Herein, the contribution of the environment to behavior and neurogenesis of pigeons was investigated. Adult pigeons (Columba livia, n = 6/group), housed in standard (SE) or enriched environment (EE) for 42 days, were exposed to an unfamiliar environment (UE) followed by presentation to a novel object (NO). Video recordings of UE+NO tests were analyzed and scored for latency, duration and frequency of angular head movements, peeping, grooming, immobility and locomotion. Twenty-four hours later, pigeons were submitted to the tonic immobility test (TI) and number of trials for TI and TI duration were scored, followed by euthanasia 2 h later. Brains were immunohistochemically processed to reveal doublecortin (DCX), a marker for newborn neurons. Compared to those housed in SE, the pigeons housed in EE responded to a NO with more immobility. In addition, the pigeons housed in EE presented longer TI, more DCX-immunoreactive (DCX-ir) cells in the hippocampus and fewer DCX-ir cells in the lateral striatum than those housed in SE. There was no correlation between the number of DCX-ir cells and the scores of immobility in behavioral tests. Together, these data suggest that enrichment favored behavioral inhibition and neurogenesis in the adult pigeons through different, parallel mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Arcopallium

AHM:

Angular head movements

BSA:

Bovine serum albumin

CDL:

Area corticoidea dorsolateralis

DAB:

3,3'-Diaminobenzidine

DCX:

Doublecortin

DCX-ir:

Doublecortin immunoreactive

DG:

Dentate gyrus

DL:

Dorsolateral region of Hp

DM:

Dorsomedial region of Hp

E:

Entopallium

EE:

Enriched environment

Ep:

Ependyma

GP:

Globus pallidus

HA:

Hyperpallium apicalle

HD:

Hyperpallium densocellulare

Hp:

Hippocampus

HVC:

Higher vocal center

ief:

Intraependymal DCX-ir fascicles

ll:

Lateral layer of ‘‘V’’-shaped Hp area

LPS:

Lamina pallio-subpallialis

LSt:

Lateral striatum

ml:

Medial layer of ‘‘V’’-shaped Hp area

MSt:

Medial striatum

M:

Mesopallium

N:

Nidopallium

NO:

Novel object

PB:

Phosphate buffer

PBS:

Phosphate buffer saline solution

PBST:

PBS plus 0.25 % triton X-100

RA:

Robustus arcopallii

rmb:

Rostral migratory-like bundle of DCX-ir fibers

SE:

Standard environment

SGZ:

Subgranular layer

St:

Striatum

SVZ:

Subventricular zone

TI:

Immobility test

TPO:

Area temporoparieto-occipitalis

Tr:

Triangular part of ‘‘V’’-shaped Hp area

UE:

Unfamiliar environment test

UE+NO:

Unfamiliar environment test plus novel object test

VP:

Ventral pallidum

V:

Lateral ventricle

VZ1 or 2:

Ventricular proliferative zones 1 or 2

VZ:

Ventricular zone

References

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “hot spots” in adult avian ventricular zone reveal radial cell division. Neuron 5:101–109

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, García-Verdugo JM, Mateo AS, Merchant-Larios H (1998) Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J Neurosci 18:1020–1037

    CAS  PubMed  Google Scholar 

  • Atoji Y, Wild JM (2004) Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and kainic acid lesions. J Comp Neurol 475:426–461

    Article  CAS  PubMed  Google Scholar 

  • Atoji Y, Wild JM (2005) Afferent and efferent connections of the dorsolateral corticoid area and a comparison with connections of the temporo-parietooccipital area in the pigeon (Columba livia). J Comp Neurol 485:165–182

    Article  PubMed  Google Scholar 

  • Atoji Y, Wild JM (2006) Anatomy of the avian hippocampal formation. Rev Neuroscience 17:13–15

    Article  Google Scholar 

  • Atoji Y, Wild JM (2007) Limbic system in birds: morphological basis. In: Watanabe S, Hofman M (eds) Integration of comparative neuroanatomy and comparative cognition. Keio University Pess, Tokyo, pp 97–124

    Google Scholar 

  • Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 447:177–199

    Article  PubMed  Google Scholar 

  • Balthazart J, Ball G (2014) Doublecortin is a highly valuable endogenous marker of adult neurogenesis in canaries. Brain Behav Evolut 84:1–4

    Article  Google Scholar 

  • Balthazart J, Boseret G, Konkle ATM, Hurley LL, Ball GF (2008) Doublecortin as a marker of adult neuroplasticity in the canary song control nucleus HVC. Eur J Neurosci 27:801–817

    Article  PubMed  Google Scholar 

  • Balthazart J, Charlier TD, Barker JM, Yamamura T, Ball GF (2010) Sex steroid-induced neuroplasticity and behavioural activation in birds. Eur J Neurosci 32:2116–2132

    Article  PubMed  PubMed Central  Google Scholar 

  • Bérdard A, Parent A (2004) Evidence of newly neurons in the human olfactory bulb. Dev Brain Res 151:159–168

    Article  CAS  Google Scholar 

  • Bingman VP, Hough GE, Kahn MC, Siegel JJ (2003) The homing pigeon hippocampus and space: in search of adaptive specialization. Brain Behav Evol 62:117–127

    Article  PubMed  Google Scholar 

  • Bingman VP, Gagliardo A, Hough GE, Ioale P, Kahn MC, Siegel JJ (2005) The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integr Comp Biol 45:555–564

    Article  PubMed  Google Scholar 

  • Bingman VP, Siegel JJ, Gagliardo A, Erichsen JT (2006) Representing the richness of avian spatial cognition: properties of a lateralized homing pigeon hippocampus. Neuroscience 17:17–28

    Google Scholar 

  • Boseret G, Ball G, Balthazart J (2007) The microtubule-associated protein doublecortin is broadly expressed in the telencephalon of adult canaries. J Chem Neuroanat 33:140–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenes JC, Rodriguez O, Fornaguera J (2008) Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 89:85–93

    Article  CAS  PubMed  Google Scholar 

  • Brito I, Britto LRG, Ferrari EAM (2006) Classical tone-shock conditioning induces zenk expression in the pigeon (Columba livia) hippocampus. Behav Neurosci 120:353–361

    Article  CAS  PubMed  Google Scholar 

  • Bronstein PM, Hirsch SM (1976) Ontogeny of defensive reactions in Norway rats. J Comp Physiol Psych 90:620–629

    Article  CAS  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21:513–521

    Article  PubMed  Google Scholar 

  • Cain ME, Green TA, Bardo MT (2006) Environmental enrichment decreases responding for visual novelty. Behav Process 73:360–366

    Article  Google Scholar 

  • Capes-Davi A, Tolhurst O, Dunn JM, Jeffrey PL (2005) Expression of doublecortin (DCX) and doublecortin-like kinase (DCLK) within the developing chick brain. Dev Dynam 232:457–467

    Article  CAS  Google Scholar 

  • Cohen D, Segal M, Reiner O (2008) Doublecortin supports the development of dendritic arbors in primary hippocampal neurons. Dev Neurosci 30:187–199

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Broadbent N (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev 24:465–484

    Article  CAS  PubMed  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  • Craig JV, Vargas JV, Milliken GA (1986) Fearful and associated responses of White Leghorn hens: Effects of cage environments and genetic stocks. Poultry Sci 65:2199–2207

    Article  CAS  Google Scholar 

  • Crispim CF, Pederiva CN, Bose RC, Garcia VA, Lino-de-Oliveira C, Marino-Neto J (2012) ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals. Comput Biol Med 42:257–264

    Article  Google Scholar 

  • Csillag A, Bálint E, Adám A, Zachar G (2008) The organization of the basal ganglia in the domestic chick (Gallus domesticus): Anatomical localization of DARPP-32 in relation to glutamate. Brain Res Bull 76:183–191

    Article  CAS  PubMed  Google Scholar 

  • De Souza ACB, Averbeck E, Paschoalini MA, Faria MS, Lino-de-Oliveira C, Marino-Neto J (2009) The peeping response of pigeons (Columba livia) to isolation from conspecifics and exposure to a novel environment. Behav Process 81:26–33

    Article  Google Scholar 

  • Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A. 100:14385–14390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, Zang M, Shang L, Cynthia NA, Li Z, Yang Z, Chen D, Huang J, Xiong K (2014) Short term environmental enrichment exposure induces proliferation and maturation of doublecortin-positive cells in the prefrontal cortex. Neural Regen Res 9:318–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fee MS, Goldberg JH (2011) A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 198:152–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari EA, Faleiros L, Cerutti SM, Oliveira AM (1999) The functional value of sound and exploratory behaviour in detelencephalated pigeons. Behav Brain Res 101:93–103

    Article  CAS  PubMed  Google Scholar 

  • Funke K (1989) Somatosensory areas in the telencephalon of the pigeon. Exp Brain Res 76:620–638

    Article  CAS  PubMed  Google Scholar 

  • Gagliardo A, Ioale P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19:311–315

    CAS  PubMed  Google Scholar 

  • Gagliardo A, Pollonara E, Coppola VJ, Santos CD, Wikelski M, Bingman VP (2014) Evidence for perceptual neglect of environmental features in hippocampal-lesioned pigeons during homing. Eur J Neurosci 40:3102–3110

    Article  PubMed  Google Scholar 

  • Gallup GG (1979) Tonic immobility as a measure of fear in domestic fowl. Anim Behav 27:316–317

    Article  Google Scholar 

  • Gallup GG, Rager DR (1996) Tonic immobility as a model of extreme states of behavioral inhibition. In: Kavaliers M (ed) Motor activity and movement disorders. Humana Press, Totowa, NJ, pp 57–80

    Chapter  Google Scholar 

  • García-Verdugo JM, Wicheterle F, Doetsch F, Lim DA, Alvarez-Buylla A (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36:234–248

    Article  PubMed  Google Scholar 

  • Gomez-Climent MA, Guirado R, Varea E, Nacher J (2010) ‘‘Arrested development’’ immature, but not recently generated, neurons in the adult brain. Arch Ital Biol 148:159–172

    CAS  PubMed  Google Scholar 

  • Gong C, Wang TW, Huang HS, Parent JM (2007) Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J Neurobiol 27:1803–1811

    CAS  Google Scholar 

  • Hall ZJ, Bauchinger U, Gerson AR, Price ER, Langlois LA, Boyles M, Pierce B, Mcwilliams SR, Sherry DF, Macdougall-Shackleton SA (2014) Site-specific regulation of adult neurogenesis by dietary fatty acid content, vitamin E and flight exercise in European starlings. Eur J Neurosci 39:875–882

    Article  PubMed  Google Scholar 

  • Hazard D, Leclaire S, Couty M, Guémené D (2008) Genetic differences in coping strategies in response to prolonged and repeated restraint in Japanese quail divergently selected for long or short tonic immobility. Horm Behav 54:645–653

    Article  CAS  PubMed  Google Scholar 

  • Hellemans KG, Nobrega JN, Olmstead MC (2005) Early environmental experience alters baseline and ethanol-induced cognitive impulsivity: relationship to forebrain 5-HT1A receptor binding. Behav Brain Res 159:207–220

    Article  CAS  PubMed  Google Scholar 

  • Herold C, Bingman VP, Ströckens F, Letzner S, Sauvage M, Palomero-Gallagher N, Zilles K, Güntürkün O (2014) Distribution of neurotransmitter receptors and zinc in the pigeon (Columba livia) hippocampal formation: A basis for further comparison with the mammalian hippocampus. J Comp Neurol 522:2553–2575

    Article  CAS  PubMed  Google Scholar 

  • Jones BR (1984) Experimental novelty and tonic immobility in chickens (Gallus domesticus). Behav Process 9:255–260

    Article  Google Scholar 

  • Jones RB (1986) The tonic immobility reaction of the domestic fowl: A review. World Poultry Sci J 42:82–96

    Article  Google Scholar 

  • Jones RB, Waddington DG (1992) Modification of fear in domestic chicks, Gallus gallus domesticus, via regular handling and early environmental enrichment. Anim Behav 43:1021–1033

  • Karten HJ, Dubbeldam JL (1973) The organization and projections of the paleostriatal complex in the pigeon (Columba livia). J Comp Neurol 148:61–90

    Article  CAS  PubMed  Google Scholar 

  • Karten HJ, Hodos W (1967) Stereotaxic Atlas of the brain of the pigeon (Columba livia). Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Karten HJ, Hodos W, Nauta WJ, Revzin AM (1973) Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–277

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G (2012) New neurons for ‘survival of the fittest’. Nat Rev Neurosci 13:727–736

    CAS  PubMed  Google Scholar 

  • Kempermann G, Kuhn HG, Cage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Peregrine J, Arnold AP (2006) The distribution of expression of doublecortin (DCX) mRNA and protein in the zebra finch brain. Brain Res 1106:189–196

    Article  CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (2001) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. P Natl Acad Sci USA 96:5768–5773

    Article  Google Scholar 

  • Kuenzel WJ, Medina L, Csillag A, Perkel DJ, Reiner A (2011) The avian subpallium: new insights into structural and functional sub-divisions occupying the lateral sub-pallial wall and their embryological origins. Brain Res 1424:67–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  • Kujiyat SK, Craig JV, Dayton AD (1983) Duration of tonic immobility affected by housing environment in White Leghorn hens. Poultry Sci 62:2280–2282

    Article  CAS  Google Scholar 

  • Kujiyat SK, Craig JV, Dayton AD (1984) Fear-related responses of White Leghorn hens of several genetic stocks in five-bird cages and associations with quantitative traits. Poultry Sci 63(9):1679–1688

    Article  CAS  Google Scholar 

  • Ladage LD, Roth TC, Fox RA, Pravosudov VV (2010) Ecologically relevant spatial memory use modulates hippocampal neurogenesis. P RSoc B 1684:1071–1079

    Google Scholar 

  • Ladage LD, Roth TC, Pravosudov VV (2011) Hippocampal neurogenesis is associated with migratory behaviour in adult but not juvenile sparrows (Zonotrichia leucophryss sp). P R Soc B 1702:138–143

    Article  Google Scholar 

  • Larsson F, Winblad B, Mohammed AH (2002) Psychological stress and environmental adaptation in enriched vs. impoverished housed rats. Learn Behav 73:193–207

    CAS  Google Scholar 

  • Latham N, Mason G (2010) Frustration and perseveration in stereotypic captive animals: Is a taste of enrichment worse than none at all? Behav Brain Res 211:96–104

    Article  PubMed  Google Scholar 

  • Laude JR, Stagner JP, Rayburn-Reeves R, Zentall TR (2014) Midsession reversals with pigeons: visual versus spatial discriminations and the intertrial interval. Learn Behav 42:40–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazareva OF, Kandray K, Acerbo MJ (2014) Hippocampal lesion and transitive inference: Dissociation of inference-based and reinforcement-based strategies in pigeons. Hippocampus, pp 1–8

  • Leger M, Paizanis E, Dzahini K, Quiedeville A, Bouet V, Cassel JC, Freret T, Schumann-Bard P, Boulouard M (2014) Environmental enrichment duration differentially affects behavior and neuroplasticity in adult mice. Cereb Cortex. doi:10.1093/cercor/bhu119

    PubMed  Google Scholar 

  • Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80:281–307

    Article  CAS  PubMed  Google Scholar 

  • Lindsey BW, Tropepe V (2014) Changes in the social environment induce neurogenic plasticity predominantly in niches residing in sensory structures of the zebrafish brain independently of cortisol levels. Dev Neurobiol 74:1053–1077

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Zuo M, Alvarez-Buylla A, Cheng MF (1997) Neurogenesis in juvenile and adult ring doves. J Comp Neurol 379:300–312

    Article  CAS  PubMed  Google Scholar 

  • Llorens-Martin MV, Rueda N, Martinez-Cue C, Torres-Alemán I, Florez J, Trejo JL (2007) Both increases in immature dentate neuron number and decreases of immobility time in the forced swim test occurred in parallel after environmental enrichment of mice. Neuroscience 147:631–638

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Ding L, Perkel DJ (2001) An avian basal ganglia pathway essential for vocal learning forms a closed topographic loop. J Neurosci 21:6836–6845

    CAS  PubMed  Google Scholar 

  • Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23:1–12

    Article  CAS  PubMed  Google Scholar 

  • Mehlhorn J, Rehkämper G (2009) Neurobiology of the homing pigeon—a review. Naturwissenschaften 96:1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Melleu F, Santos TS, Lino-de-Oliveira C, Marino-Neto J (2013) Distribution and characterization of doublecortin-expressing cells and fibers in the brain of the adult pigeon (Columba livia). J Chem Neuroanat 47:57–70

    Article  CAS  PubMed  Google Scholar 

  • Meshi D, Drew MR, Saxe M, Ansorge MS, David D, Santarelli L, Malapani C, Moore H, Hen R (2006) Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 9:729–731

    Article  CAS  PubMed  Google Scholar 

  • Mezey S, Krivokuca D, Balint E, Adorjan A, Zachar G, Csillag A (2012) Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J Comp Neurol 520:100–116

    Article  CAS  PubMed  Google Scholar 

  • Miller KA, Mench JA (2006) Differential effects of 4 types of environmental enrichment on aggressive pecking, feather pecking, feather loss, food wastage and productivity in Japanese quail. Brit Poultry Sci 47:646–658

    Article  CAS  Google Scholar 

  • Mills AD, Faure JM (1991) Divergent Selection for duration of tonic immobility and social reinstatement behavior in Japanese quail (Coturnix coturnix japonica) chicks. J Comp Neurol 105:25–38

    CAS  Google Scholar 

  • Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629–644

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Watanabe S, Betsuyaku T, Fujita K (2011) Do birds (pigeons and bantams) know how confident they are of their perceptual decisions? Anim Cogn 14:83–93

    Article  PubMed  Google Scholar 

  • Nazar FN, Marin RH (2011) Chronic stress and environmental enrichment as opposite factors affecting the immune response in Japanese quail (Coturnixcoturnix japonica). Stress 14:166–173

    Article  CAS  PubMed  Google Scholar 

  • Nikolakopoulou AM, Davies HA, Stewart MG (2006) Passive avoidance training decrease synapse density in the hippocampus of the domestic chick. Eur J Neurosci 23:1054–1062

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F (1981) A brain for all seasons: Cyclical anatomical changes in song control nuclei of the canary brain. Science 214:1368–1370

    Article  CAS  PubMed  Google Scholar 

  • Pattison KF, Laude JR, Zentall TR (2013) Environmental enrichment affects suboptimal, risky, gambling-like choice by pigeons. Anim Cogn 16:429–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Patzke N, Spocter MA, Karlsson KA, Bertelsen MF, Haagensen M, Chawana R, Streicher S, Kaswera C, Gilissen E, Alagaili AN, Mohammed OB, Reep RL, Bennett NC, Siegel JM, Ihunwo AO, Manger PR (2013) In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct Funct 220:361–383

    Article  PubMed  Google Scholar 

  • Rasband WS (1997–2011) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/

  • Rayburn-Reeves RM, Stagner JP, Kirk CR, Zentall TR (2013) Reversal learning in rats (Rattusnorvegicus) and pigeons (Columba livia): qualitative differences in behavioral flexibility. J Comp Psychol 127:202–211

    Article  PubMed  Google Scholar 

  • Reiner A (2002) Functional circuitry of the avian basal ganglia: implications for basal ganglia organization in stem amniotes. Brain Res Bull 57:513–528

    Article  PubMed  Google Scholar 

  • Reiner AD, Perkel J, Bruce L, Butler A, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Gütürkun O, Lee DW, Mello CV, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A Discov Mol Cell Evol Biol 287:1080–1102

    Article  PubMed  Google Scholar 

  • Richard S, Land N, Saint-Dizier H, Leterrier C, Faure JM (2010) Human handling and presentation of a novel object evoke independent dimensions of fear in Japanese quail. Behav Process 85:18–23

    Article  CAS  Google Scholar 

  • Rovee CK, Luciano DP (1973) Rearing influences on tonic immobility in three-day-old chicks (Gallus gallus) J Comp Physiol. Psycho 83:351–354

    CAS  Google Scholar 

  • Salzen EA (1963) Imprinting and the immobility reactions of domestic fowl. Anim Behav 11:66–71

    Article  Google Scholar 

  • Scarf D, Millar J, Pow N, Colombo M (2014) Inhibition, the final frontier: The impact of hippocampal lesions on behavioral inhibition and spatial processing in pigeons. BehavNeurosci 128:42

    Google Scholar 

  • Shanahan M, Bingman VP, Shimizu T, Wild M, Güntürkün O (2013) Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis. Front Comput Neurosci 7:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherry DF, Hoshooley JS (2010) Seasonal hippocampal plasticity in food-storing birds. Philos T R Soc B 365:933–943

    Article  Google Scholar 

  • Shimizu T, Bowers AN, Budzynski CA, Kahn MC, Bingman VP (2004) What does a pigeon (Columba livia) brain look like during homing? Selective examination of ZENK expression. Behav Neurosci 118:845–851

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Patton TB, Husband SA (2010) Avian Visual Behavior and the Organization of the Telencephalon. Brain Behav Evol 75:204–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Unal B, Bradley PM, Sahin B, Canan S, Aslan H, Kaplan S (2002) Estimation of numerical density and mean synaptic height in chick hippocampus 24 and 48 hours after passive avoidance training. Brain Res Dev Brain Res 136:135–144

    Article  CAS  PubMed  Google Scholar 

  • Van Praag H, Kempermann G, Cage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • Waranabe S (2005) Lesions in the basal ganglion and hippocampus on performance in a Wisconsin Card Sorting Test-like task in pigeons. Physiol Behav 85:324–332

    Article  CAS  Google Scholar 

  • Watanabe S (2001) Effects of hippocampal lesions on repeated acquisition of spatial discrimination in pigeons. Behav Brain Res 120:59–66

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Sakamoto J, Wakita M (1995) Pigeons’ discrimination of paintings by Monet and Picasso. J Exp Anal Behav 639:165–174

    Article  Google Scholar 

  • Wild JM (1987) The avian somatosensory system: Connections of regions of body representation in the forebrain of the pigeon. Brain Res 412:205–223

    Article  CAS  PubMed  Google Scholar 

  • Wild JM (1992) Direct and indirect ‘cortico’-rubral and rubrocerebellar cortical projections in the pigeon. J Comp Neurol 326:623–636

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman PH, Buijs SAF, Bolhuis JE, Keeling LJ (2011) Behaviour of domestic fowl in anticipation of positive and negative stimuli. Anim Behav 81:569–577

    Article  Google Scholar 

Download references

Acknowledgments

Michele Vaz Pinheiro (MVP) and Fernando Falkenburger Melleu (FFM) have contributed equally to the development, data collection and analysis of the present experiments and both should be considered the main authors of the present report. The present study was supported by FAPESC (‘‘Young Investigator Grants’’) and Alexander von Humboldt Foundation Research (‘‘Equipment Grants’’) to CLO, as well as by CNPq Research Grants to JMN (proc. 471888/03-6 and 300308/2007-8). FFM and MVP received CAPES MSc fellowships. We wish to thank the excellent and devoted technical help and animal care provided by Mr. Carlos H. Espíndola, Mrs. Joanésia M. J. Rothstein, Mr. Marco A. de Lorenzo, Mr. Emerson V. Fornalski, Mrs. Sandra R. B. de Oliveira, and Mr. Sandro M. de Jesus throughout the experiments.

Ethical statement

All authors contributed to this work and gave their consent to publish this paper. We do not have any commercial conflicts of interest. All financial support came from public agencies without any influence on study design, collection, analysis, and interpretation of data or writing of reports. We guarantee all animal procedures were conducted in compliance with “Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research” and the protocols were approved by the Local Ethical Committee in Animal Research. We also guarantee that this work is not under simultaneous consideration in any other journal and will not be published elsewhere in any language without the consent of the copyright owners, that the rights of third parties will not be violated and that the publisher will not be held legally responsible should there be any claims for compensation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Melleu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melleu, F.F., Pinheiro, M.V., Lino-de-Oliveira, C. et al. Defensive behaviors and prosencephalic neurogenesis in pigeons (Columba livia) are affected by environmental enrichment in adulthood. Brain Struct Funct 221, 2287–2301 (2016). https://doi.org/10.1007/s00429-015-1043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1043-6

Keywords

Navigation