Skip to main content
Log in

Participation of the left inferior frontal gyrus in human originality

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Human creative cognition is commonly described as a twofold cyclic process that involves an idea generation phase and an idea evaluation phase. Although the evaluation phase makes a crucial contribution to originality, its underlying mechanisms have not received sufficient research attention. Here, we suggest that the left inferior frontal gyrus (lIFG) plays a major role in the interplay between the evaluation and generation networks and that inhibiting this region’s activity may have an effect on “releasing” the generation neural network, resulting in greater originality. To examine the neural networks that mediate the generation and evaluation of ideas, we conducted an fMRI experiment on a group of healthy human participants (Study 1), in which we compared an idea generation task to an idea evaluation task. We found that evaluating the originality of ideas is indeed associated with a relative increase in lIFG activation, as opposed to generating original ideas. We further showed that temporarily inhibiting the lIFG using continuous theta-burst stimulation (Study 2) results in less strict evaluation on the one hand and increased originality scores on the other. Our findings provide converging evidence from multiple methods to show that the lIFG participates in evaluating the originality of ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amabile TM, Pillemer J (2012) Perspectives on the social psychology of creativity. J Creat Behav 46:3–15

    Article  Google Scholar 

  • Baer J (2015) Domain specificity of creativity. Academic Press, New York

    Google Scholar 

  • Basadur M, Graen GB, Green SG (1982) Training in creative problem solving: effects on ideation and problem finding and solving in an industrial research organization. Organ Behav Hum Perform 30:41–70

    Article  Google Scholar 

  • Beaty RE, Benedek M, Kaufman SB, Silvia PJ (2015) Default and executive network coupling supports creative idea production. Sci Rep 5:10964

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaty RE, Benedek M, Silvia PJ, Schacter DL (2016) Creative cognition and brain network dynamics. Trends Cogn Sci 20:87–95

    Article  PubMed  Google Scholar 

  • Benedek M, Jauk E, Fink A et al (2014a) To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage 88:125–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedek M, Jauk E, Sommer M et al (2014b) Intelligence, creativity, and cognitive control: the common and differential involvement of executive functions in intelligence and creativity. Intelligence 46:73–83. doi:10.1016/j.intell.2014.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Binkofski F, Buxbaum LJ (2013) Two action systems in the human brain. Brain Lang 127:222–229

    Article  PubMed  Google Scholar 

  • Cheng C, Msel AH, Kasof J et al (2006) Boundless creativity: evidence for domain generality of individual differences in creativity. J Creative Behav 40:179–199

    Article  Google Scholar 

  • Chi RP, Snyder AW (2011) Facilitate insight by non-invasive brain stimulation. PLoS One 6:e16655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chistyakov AV, Kaplan B, Rubichek O et al (2005) Antidepressant effects of different schedules of repetitive transcranial magnetic stimulation vs. clomipramine in patients with major depression: relationship to changes in cortical excitability. Int J Neuropsychopharmacol 8:223–233

    Article  CAS  PubMed  Google Scholar 

  • Cho SS, Ko JH, Pellecchia G et al (2010) Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul 3:170–176

    Article  PubMed  Google Scholar 

  • Cho SS, Pellecchia G, Ko JH et al (2012) Effect of continuous theta burst stimulation of the right dorsolateral prefrontal cortex on cerebral blood flow changes during decision making. Brain Stimul 5:116–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrysikou EG, Thompson-Schill SL (2011) Dissociable brain states linked to common and creative object use. Hum Brain Mapp 32:665–675

    Article  PubMed  Google Scholar 

  • Chrysikou EG, Hamilton RH, Coslett HB et al (2013) Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cogn Neurosci 4:81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Coubard OA, Duretz S, Lefebvre V et al (2011) Practice of contemporary dance improves cognitive flexibility in aging. Front Aging Neurosci 3:13. doi:10.3389/fnagi.2011.00013

    Article  PubMed  PubMed Central  Google Scholar 

  • Csikszentmihalyi M (1988) Society, culture, and person: a systems view of creativity. Cambridge University Press, Cambridge

    Google Scholar 

  • Csikszentmihalyi M (1996) Flow and the psychology of discovery and invention

  • de Manzano O, Ullen F (2012) Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage 63:272–280. doi:10.1016/j.neuroimage.2012.06.024

    Article  PubMed  Google Scholar 

  • Doeltgen SH, Ridding MC (2011) Modulation of cortical motor networks following primed theta burst transcranial magnetic stimulation. Exp Brain Res 215:199–206

    Article  PubMed  Google Scholar 

  • Edl S, Benedek M, Papousek I et al (2014) Creativity and the stroop interference effect. Pers Individ Differ 69:38–42

    Article  Google Scholar 

  • Ellamil M, Dobson C, Beeman M, Christoff K (2012) Evaluative and generative modes of thought during the creative process. NeuroImage 59:1783–1794. doi:10.1016/j.neuroimage.2011.08.008

    Article  PubMed  Google Scholar 

  • Erhard K, Kessler F, Neumann N et al (2014) Professional training in creative writing is associated with enhanced fronto-striatal activity in a literary text continuation task. NeuroImage 100:15–23. doi:10.1016/j.neuroimage.2014.05.076

    Article  CAS  PubMed  Google Scholar 

  • Fink A, Benedek M, Koschutnig K et al (2015) Training of verbal creativity modulates brain activity in regions associated with language-and memory-related demands. Hum Brain Mapp 36:4104–4115

    Article  PubMed  PubMed Central  Google Scholar 

  • Finke RA, Ward TB, Smith SM (1992) Creative cognition: theory, research, and applications. MIT Press, Cambridge

    Google Scholar 

  • Forman SD, Cohen JD, Fitzgerald M et al (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33:636–647

    Article  CAS  PubMed  Google Scholar 

  • Goebel R, Esposito F, Formisano E (2006) Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27:392–401

    Article  PubMed  Google Scholar 

  • Gonen-Yaacovi G, de Souza LC, Levy R et al (2013) Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Front Hum Neurosci 7:465. doi:10.3389/fnhum.2013.00465

    Article  PubMed  PubMed Central  Google Scholar 

  • Green AE, Spiegel KA, Giangrande EJ et al (2016) Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cereb Cortex 7:2628–2639

    Google Scholar 

  • Groppa S, Oliviero A, Eisen A et al (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilford JP (1967) The nature of human intelligence. McGraw-Hill, New York, p 538

    Google Scholar 

  • Guilford JP, Christensen PR, Merrifield PR, Wilson RC (1978) Alternate uses: manual of instructions and interpretation. Sheridan Psychological Services, Orange

    Google Scholar 

  • Hargreaves IS, Pexman PM, Pittman DJ, Goodyear BG (2011) Tolerating ambiguity: ambiguous words recruit the left inferior frontal gyrus in absence of a behavioral effect. Exp Psychol 58(1):19–30

    Article  PubMed  Google Scholar 

  • Huang Y-Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  • Jalinous R (1995) Guide to magnetic stimulation. Magstim, Whitland

    Google Scholar 

  • Jung RE, Mead BS, Carrasco J, Flores RA (2013) The structure of creative cognition in the human brain. Front Hum Neurosci 7(10):3389

    Google Scholar 

  • Kim H, Markus HR (1999) Deviance or uniqueness, harmony or conformity? A cultural analysis. J Pers Soc Psychol 77:785

    Article  Google Scholar 

  • Klein E, Kreinin I, Chistyakov A et al (1999) Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study. Arch Gen Psychiatry 56:315–320

    Article  CAS  PubMed  Google Scholar 

  • Kleinmintz OM, Goldstein P, Mayseless N et al (2014) Expertise in musical improvisation and creativity: the mediation of idea evaluation. PLoS One 9:1568

    Article  Google Scholar 

  • Ko JH, Monchi O, Ptito A et al (2008) Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task—a TMS—[11C] raclopride PET study. Eur J Neurosci 28:2147–2155

    Article  PubMed  PubMed Central  Google Scholar 

  • Kröger S, Rutter B, Stark R, Windmann S, Hermann C, Abraham A (2012) Using a shoe as a plant pot: neural correlates of passive conceptual expansion. Brain Res 1430:52–61

    Article  PubMed  Google Scholar 

  • Kühn S, Ritter SM, Müller BCN et al (2014) The importance of the default mode network in creativity—a structural MRI study. J Creat Behav 48:152–163. doi:10.1002/jocb.45

    Article  Google Scholar 

  • Liakakis G, Nickel J, Seitz RJ (2011) Diversity of the inferior frontal gyrus—a meta-analysis of neuroimaging studies. Behav Brain Res 225:341–347

    Article  CAS  PubMed  Google Scholar 

  • Limb CJ, Braun AR (2008) Neural substrates of spontaneous musical performance: an fMRI study of jazz improvisation. PLoS One 3:e1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Chow HM, Xu Y et al (2012) Neural correlates of lyrical improvisation: an FMRI study of freestyle rap. Sci Rep 2:834. doi:10.1038/srep00834

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Erkkinen MG, Healey ML et al (2015) Brain activity and connectivity during poetry composition: toward a multidimensional model of the creative process. Hum Brain Mapp 36:3351–3372

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotze M, Erhard K, Neumann N et al (2014) Neural correlates of verbal creativity: differences in resting-state functional connectivity associated with expertise in creative writing. Front Hum Neurosci 8:516

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45

    Article  PubMed  Google Scholar 

  • Mayseless N, Shamay-Tsoory SG (2015) Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience 291:167–176. doi:10.1016/j.neuroscience.2015.01.061

    Article  CAS  PubMed  Google Scholar 

  • Mayseless N, Aharon-Peretz J, Shamay-Tsoory S (2014) Unleashing creativity: the role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas. Neuropsychologia 64C:157–168. doi:10.1016/j.neuropsychologia.2014.09.022

    Article  Google Scholar 

  • McGettigan C, Eisner F, Agnew ZK et al (2013) T’ain’t what you say, it’s the way that you say it—left insula and inferior frontal cortex work in interaction with superior temporal regions to control the performance of vocal impersonations. J Cogn Neurosci 25:1875–1886

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendez MF (2004) Dementia as a window to the neurology of art. Med Hypotheses 63:1–7. doi:10.1016/j.mehy.2004.03.002

    Article  PubMed  Google Scholar 

  • Miller BL (2000) Functional correlates of musical and visual ability in frontotemporal dementia. Br J Psychiatry 176:458–463. doi:10.1192/bjp.176.5.458

    Article  CAS  PubMed  Google Scholar 

  • Mylius V, Ayache SS, Ahdab R et al (2013) Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. NeuroImage 78:224–232

    Article  CAS  PubMed  Google Scholar 

  • Nieuwland MS (2012) Establishing propositional truth-value in counterfactual and real-world contexts during sentence comprehension: differential sensitivity of the left and right inferior frontal gyri. NeuroImage 59:3433–3440

    Article  PubMed  Google Scholar 

  • Niu W, Sternberg RJ (2001) Cultural influences on artistic creativity and its evaluation. Int J Psychol 36:225–241. doi:10.1080/00207590143000036

    Article  Google Scholar 

  • Nyffeler T, Cazzoli D, Wurtz P et al (2008) Neglect-like visual exploration behaviour after theta burst transcranial magnetic stimulation of the right posterior parietal cortex. Eur J Neurosci 27:1809–1813

    Article  PubMed  Google Scholar 

  • Perach-Barzilay N, Tauber A, Klein E et al (2013) Asymmetry in the dorsolateral prefrontal cortex and aggressive behavior: a continuous theta-burst magnetic stimulation study. Soc Neurosci 8:178–188

    Article  CAS  PubMed  Google Scholar 

  • Pinho AL, Ullén F, Castelo-Branco M et al (2016) Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cereb Cortex 26:3052–3063

    Article  PubMed  Google Scholar 

  • Plucker J, Zabelina D (2008) Creativity and interdisciplinarity: one creativity or many creativities? ZDM 41:5–11. doi:10.1007/s11858-008-0155-3

    Article  Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossini PM, Burke D, Chen R et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol 126:1071–1107

    Article  CAS  PubMed  Google Scholar 

  • Runco MA, Acar S (2012) Divergent thinking as an indicator of creative potential. Creat Res J 24:66–75

    Article  Google Scholar 

  • Runco MA, Jaeger GJ (2012) The standard definition of creativity. Creat Res J 24:92–96

    Article  Google Scholar 

  • Runco MA, Smith WR (1992) Interpersonal and intrapersonal evaluations of creative ideas. Pers Individ Differ 13:295–302

    Article  Google Scholar 

  • Seeley WW, Matthews BR, Crawford RK et al (2008) Unravelling Bolero: progressive aphasia, transmodal creativity and the right posterior neocortex. Brain 131:39–49. doi:10.1093/brain/awm270

    Article  PubMed  Google Scholar 

  • Shah C, Erhard K, Ortheil H-J et al (2013) Neural correlates of creative writing: an fMRI study. Hum Brain Mapp 34:1088–1101

    Article  PubMed  Google Scholar 

  • Shamay-Tsoory SG, Adler N, Aharon-Peretz J et al (2011) The origins of originality: the neural bases of creative thinking and originality. Neuropsychologia 49:178–185

    Article  CAS  PubMed  Google Scholar 

  • Simonton DK (2014) Creative performance, expertise acquisition, individual differences, and developmental antecedents: an integrative research agenda. Intelligence 45:66–73. doi:10.1016/j.intell.2013.04.007

    Article  Google Scholar 

  • Sowden PT, Pringle A, Gabora L (2014) The shifting sands of creative thinking: connections to dual-process theory. Think Reason 21:40–60. doi:10.1080/13546783.2014.885464

    Article  Google Scholar 

  • Spreitzer GM, Sonenshein S (2004) Toward the construct definition of positive deviance. Am Behav Sci 47:828–847

    Article  Google Scholar 

  • Stein MI (1953) Creativity and culture. J Psychol 36:311–322

    Article  Google Scholar 

  • Sternberg RJ (2005) Creativity or creativities? Int J Hum-Comput Stud 63:370–382

    Article  Google Scholar 

  • Stevenson CE, Kleibeuker SW, de Dreu CK, Crone EA (2014) Training creative cognition: adolescence as a flexible period for improving creativity. Front Hum Neurosci 8:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain 3-Dimensional proportional system: an approach to cerebral imaging. Thieme Medical Publishers, New York

    Google Scholar 

  • Torrance EP (1966) Torrance tests of creative thinking: norms-technical manual, research edition. Verbal tests, forms A and B. Figural tests, forms A and B. Personnel Press, Princeton

    Google Scholar 

  • Tsujii T, Sakatani K, Masuda S et al (2011) Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study. NeuroImage 58:640–646

    Article  PubMed  Google Scholar 

  • Verbruggen F, Aron AR, Stevens MA, Chambers CD (2010) Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proc Natl Acad Sci 107:13966–13971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zack M, Cho SS, Parlee J et al (2016) Effects of high frequency repeated transcranial magnetic stimulation and continuous theta burst stimulation on gambling reinforcement, delay discounting, and stroop interference in men with pathological gambling. Brain Stimul 9:867–875

    Article  PubMed  Google Scholar 

  • Zhu Z, Hagoort P, Zhang JX et al (2012) The anterior left inferior frontal gyrus contributes to semantic unification. NeuroImage 60:2230–2237

    Article  PubMed  Google Scholar 

  • Zhu F, Zhang Q, Qiu J (2013) Relating inter-individual differences in verbal creative thinking to cerebral structures: an optimal voxel-based morphometry study. PLoS One 8:e79272. doi:10.1371/journal.pone.0079272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Israel Science Foundation (ISF) (1194/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded M. Kleinmintz.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleinmintz, O.M., Abecasis, D., Tauber, A. et al. Participation of the left inferior frontal gyrus in human originality. Brain Struct Funct 223, 329–341 (2018). https://doi.org/10.1007/s00429-017-1500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1500-5

Keywords

Navigation