Skip to main content
Log in

Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory–motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Non applicable (review paper, no new data reported or material used).

Code availability

Non applicable (review paper, no codes developed).

Notes

  1. In psychology, the term “recognition” is often used to refer to the judgment of previous occurrence (specifically “the ability to identify information as having been encountered before”, APA Dictionary of Psychology; see also Mandler 1980). In psychological research on human faces, the term is even often restricted to the judgment of a previous occurrence of specific identities of faces (i.e., familiar faces). Here it is used in a more general biological sense as the reliable production of selective (i.e., differential) responses to sensory inputs at different levels, ranging from the recognition of a visual stimulus as a face (“generic face recognition”) to its specific identity (“face identity recognition”) or its emotional expression (“emotional facial expression recognition”).

  2. The definition of prosopagnosia used here does not include cases of developmental disorders at FIR in the absence of neurological history, which are often referred to as developmental prosopagnosia or congenital prosopagnosia (Behrmann and Avidan 2005; Duchaine and Nakayama 2006), but more correctly as prosopdysgnosia (Rossion 2018b; Sorensen and Overgaard 2018).

  3. Fast periodic visual stimulation or “frequency-tagging” in EEG is a technique in which stimuli are presented at a (usually fast) periodic rate, leading to neural responses expressed in the EEG frequency spectrum (Regan 1966). This technique has considerable advantages in terms of sensitivity and objectivity of measurement (see Norcia et al. 2015; Rossion et al. 2020 for reviews).

  4. The term ‘representation’ as used here refers merely to (a pattern of) activity in the neural system that has a systematic relationship with a sensory stimulus of the environment. Although the term ‘representation’ has sometimes been used in neuroimaging in the restrictive context of multivariate pattern analysis (Kriegeskorte et al. 2008), the neural activity does not have to be distributed across spatial units such as voxels (e.g., larger neural activity to faces than non-face stimuli in the right lateral middle fusiform gyrus as a whole “represents” face stimuli).

  5. In the remainder of the text, we will typically use the term ‘letter strings’ as a general term that encompasses words (e.g., familiar written forms), non-words (unmeaningful strings of letters), or even consonant strings. The distinction is relevant given the debate of whether the visual word form area (VWFA) processes only pre-lexical (McCandliss et al. 2003) or also lexical representations (Glezer et al. 2009, 2015; Kronbichler et al. 2004).

  6. Note that the spatial frequency hypothesis is not supported by training studies on reading acquisition with atypical visual shapes (such as faces or houses) differing greatly from the natural script characteristics, but also revealing the left middle fusiform gyrus as the site of learning effects (Moore et al. 2014; Hirshorn et al. 2016; Martin et al. 2019).

  7. https://science.sciencemag.org/content/330/6009/1359.

  8. Technically, a response recorded over EEG electrodes positioned over the RH could potentially be generated from sources in the LH, although this is unlikely for the focal occipito-temporal response as displayed in Figs. 4 and 5

    . Due to the undetermined inverse problem in EEG (or MEG), source localization algorithms applied to such data would not enable substantial progress on this issue. However, testing an adapted frequency-tagging paradigm with functional near-infrared spectroscopy (e.g., slowing down the face stimulation frequency as in fMRI, see Gao et al. 2019), recording neural signals under the sampled area, could provide decisive evidence.

  9. To the best of our understanding, this negative correlation interpreted in support of the hypothesis cannot be due to the negative polarity of the N170 component.

  10. As also noted by an anonymous reviewer of this manuscript, the prosopagnosic patient reported by Barton (2008) was ambidextrous and had in fact a bilateral VOTC lesion and is therefore not considered here.

  11. Early developmental studies of face recognition have instead argued in favor of a dip of performance at a later age, at around 11 years old (Carey 1992), but this has not been supported by subsequent studies.

  12. The terms ‘holistic’ and ‘configural’ are sometimes used to refer to different concepts in human face recognition research, but they are used as synonyms here (as proposed and discussed extensively in Rossion 2009, 2013).

References

  • Adibpour P, Dubois J, Dehaene-Lambertz G (2018) Right but not left hemispheric discrimination of faces in infancy. Nat Hum Behav 2:67–79

    PubMed  Google Scholar 

  • Allison T, Ginter H, McCarthy et al (1994) Face recognition in human extrastriate cortex. J Neurophysiol 71:821–825

    CAS  PubMed  Google Scholar 

  • Antonini A, Stryker MP (2003) Rapid remodeling of axonal arbors in the visual cortex. Science 260:1819–1821

    Google Scholar 

  • Badzakova-Trajkov G, Häberling IS, Roberts RP, Corballis MC (2010) Cerebral asymmetries: complementary and independent processes. PLoS ONE 5(3):e9682

    PubMed  PubMed Central  Google Scholar 

  • Balas B, Saville A (2015) N170 face specificity and face memory depend on hometown size. Neuropsychologia 69:211–217

    PubMed  PubMed Central  Google Scholar 

  • Balas B, Saville A (2017) Hometown size affects the processing of naturalistic face variability. Vis Res 141:228–236

    PubMed  Google Scholar 

  • Barton JJ (2008) Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage. J Neuropsychol 2:197–225

    PubMed  Google Scholar 

  • Bedny M (2017) Evidence from blindness for a cognitively pluripotent cortex. Trends Cogn Sci 21:637–648

    PubMed  Google Scholar 

  • Behrmann M, Avidan G (2005) Congenital prosopagnosia: face-blind from birth. Trends Cogn Sci 9:180–187

    PubMed  Google Scholar 

  • Behrmann M, Plaut DC (2015) A vision of graded hemispheric specialization. Ann NY Acad Sci 1359:30–46

    PubMed  Google Scholar 

  • Behrmann M, Plaut DC (2020) Hemispheric organization for visual object recognition: a theoretical account and empirical evidence. Perception 49:373–404

    PubMed  Google Scholar 

  • Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8:551–565

    PubMed  PubMed Central  Google Scholar 

  • Benton AL, Van Allen MW (1968) Impairment in facial recognition in patients with cerebral disease. Trans Am Neurol Assoc 93:38–42

    CAS  PubMed  Google Scholar 

  • Bodamer J (1947) Die Prosopagnosie. Archiv Fur Psychiatrie Und Zeitschrift Fur Neurologie 179:6–54

    Google Scholar 

  • Bogen JE (1969) The other side of the brain. II. An appositional mind. Bull Los Angeles Neurol Soc 34:135–136

    CAS  PubMed  Google Scholar 

  • Boles DB (1984) Global versus local processing: is there a hemispheric dichotomy? Neuropsychologia 22:445–545

    CAS  PubMed  Google Scholar 

  • Bolger DJ, Perfetti CA, Schneider W (2005) Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Hum Brain Mapp 2:92–104

    Google Scholar 

  • Bötzel K, Grüsser OJ (1989) Electric brain potentials evoked by pictures of faces and non-faces: a search for “face-specific” EEG-potentials. Exp Brain Res 77:349–360

    PubMed  Google Scholar 

  • Bouhali F, de Schotten TM, Pinel P, Poupon C, Mangin J-F, Dehaene S, Cohen L (2014) Anatomical connections of the visual word form area. J Neurosci 34:15402–15414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier SE, Engel SA (2006) Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb Cortex 16:183–191

    PubMed  Google Scholar 

  • Bradshaw JL, Nettleton NC (1981) The nature of hemispheric specialization in man. Behav Brain Sci 4:51–63

    Google Scholar 

  • Braga LW, Amemiya E, Tauil A, Suguieda D, Lacerda C, Klein E, Dehaene-Lambertz G, Dehaene S (2017) Tracking adult literacy acquisition with functional MRI: a single-case study. Mind Brain Educ 11:121–132

    Google Scholar 

  • Brederoo SG, Van der Haegen L, Brysbaert M, Nieuwenstein MR, Cornelissen FW, Lorist MM (2020) Towards a unified understanding of lateralized vision: a large-scale study investigating principles governing patterns of lateralization using a heterogeneous sample. Cortex 133:201–214

    PubMed  Google Scholar 

  • Broca P (1865) Sur le siège de la faculté du langage articulé. Bull Mém Soc Anthropol Paris 6:377–393

    Google Scholar 

  • Bruce V, Young A (1998) In the eye of the beholder: the science of face perception. Oxford University Press, New York

    Google Scholar 

  • Bukowski H, Dricot L, Hanseeuw B, Rossion B (2013) Cerebral lateralization of face-sensitive areas in left-handers: only the FFA does not get it right. Cortex 49:2583–2589

    PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186

    CAS  PubMed  Google Scholar 

  • Busigny T, Rossion B (2011) Holistic processing impairment can be restricted to faces in acquired prosopagnosia: evidence from the global/local Navon effect. J Neuropsychol 5(Pt 1):1–14

    PubMed  Google Scholar 

  • Cai Q, Lavidor M, Brysbaert M, Paulignan Y, Nazir TA (2008) Cerebral lateralization of frontal lobe language processes and lateralization of the posterior visual word processing system. J Cogn Neurosci 20:672–681

    PubMed  Google Scholar 

  • Cai Q, Paulignan Y, Brysbaert M, Ibarrola D, Nazir TA (2010) The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb Cortex 20:1153–1163

    PubMed  Google Scholar 

  • Canário N, Jorge L, Castelo-Branco M (2020) Distinct mechanisms drive hemispheric lateralization of object recognition in the visual word form and fusiform face areas. Brain Lang 210(August):104860

    PubMed  Google Scholar 

  • Cantlon JF, Pinel P, Dehaene S, Pelphrey KA (2011) Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb Cortex 21(1):191–199

    PubMed  Google Scholar 

  • Cao X, Yang Q, Zhong P, Chen C (2019) The characteristics of face configural effect in illiterates and literates. Acta Physiol (oxf) 201:0–5

    Google Scholar 

  • Carey S (1981) The development of face perception. In: Davies G, Ellis HD (eds) Perceiving and remembering faces. Academic Press

    Google Scholar 

  • Carey S (1992) Becoming a face expert. Philos Trans R Soc Lond B Biol Sci 335(1273):95–102 (discussion 102–3)

    CAS  PubMed  Google Scholar 

  • Carey S, Diamond R (1977) From piecemeal to configurational representation of faces. Science 195:312–314

    CAS  PubMed  Google Scholar 

  • Carreiras M, Seghier ML, Baquero S, Estévez A, Lozano A, Devlin JT, Price CJ (2009) An anatomical signature for literacy. Nature 461:983–986

    CAS  PubMed  Google Scholar 

  • Castro-Caldas A, Cavaleiro Miranda P, Carmo I, Reis A, Leote F, Ribeiro C, Ducla-Soares E (1999) Influence of learning to read and write on the morphology of the corpus callosum. Eur J Neurol 6:23–28

    CAS  PubMed  Google Scholar 

  • Centanni TM, Norton ES, Park A, Beach SD, Halverson K, Ozernov-Palchik O, Gaab N, Gabrieli J (2018) Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Dev Sci 21(5):e12658

    PubMed  PubMed Central  Google Scholar 

  • Chance SA, Sawyer EK, Clover LM et al (2013) Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees. Brain Struct Funct 218:1391–1405

    PubMed  Google Scholar 

  • Cohen L, Dehaene S (2004) Specialization within the ventral stream the case for the visual word form area. Neuroimage 22:466–476

    PubMed  Google Scholar 

  • Cohen L, Dehane S, Naccache L, Lehériciy S, Dehane-Lambertz G, Hénaff MA, Michel F (2000) The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123:291–307

    PubMed  Google Scholar 

  • Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, Dehaene S (2002) Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain 125(Pt 5):1054–1069

    PubMed  Google Scholar 

  • Cohen AL, Soussand L, Corrow SL, Martinaud O, Barton JJS, Fox MD, Cohen AL (2019) Looking beyond the face area: lesion network mapping of prosopagnosia. Brain J Neurol 142:3975–3990

    Google Scholar 

  • Cohen Kadosh K, Cohen Kadosh R, Dick F, Johnson MH (2011) Developmental changes in effective connectivity in the emerging core face network. Cereb Cortex 21:1389–1994

    PubMed  Google Scholar 

  • Corballis MC (1983) Human laterality. Academic Press, New York

    Google Scholar 

  • Corballis M, Morgan M (1978) On the biological basis of human laterality: I. Evidence for a maturational left–right gradient. Behav Brain Sci 1(2):261–269

    Google Scholar 

  • Corballis MC (1991) The lopsided ape. Oxford University Press, New York

    Google Scholar 

  • Crookes K, McKone E (2009) Early maturity of face recognition: no childhood development of holistic processing, novel face encoding, or face-space. Cognition 111:219–247

    PubMed  Google Scholar 

  • Dahl CD, Rasch MJ, Tomonaga M, Adachi I (2013) The face inversion effect in non-human primates revisited—an investigation in chimpanzees (Pan troglodytes). Sci Rep 3:2504

    PubMed  PubMed Central  Google Scholar 

  • Damasio AR, Damasio H, Van Hoesen GW (1982) Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32:331–341

    CAS  PubMed  Google Scholar 

  • Davies-Thompson J, Tashakkor AY, Barton JJS (2016) The relationship between visual word and face processing lateralization in the fusiform gyri: a cross-sectional study. Brain Res 1644:88–97

    CAS  PubMed  Google Scholar 

  • Déjerine J (1891) Sur un cas de cécité verbale avec agraphie, suivi d’autopsie. In: Mémoires Société Biologique

  • de Haan M, Nelson CA (1999) Brain activity differentiates face and object processing in 6-month-old infants. Dev Psychol 35:1113–1121

    PubMed  Google Scholar 

  • de Heering A, Rossion B (2015) Rapid categorization of natural face images in the infant right hemisphere. Elife 4:1–14

    Google Scholar 

  • de Schonen S, Mathivet E (1989) First come, first served: a scenario about the development of hemispheric specialization in face recognition during infancy. Cahiers De Psychologie Cognitive Curr Psychol Cogn 9(1):3–44

    Google Scholar 

  • de Schonen S, Mathivet E (1990) Hemispheric asymmetry in a face discrimination task in infants. Child Dev 61:1192–1205

    PubMed  Google Scholar 

  • de Haan M, Johnson MH, Halit H (2003) Development of face-sensitive event-related potentials during infancy: a review. Int J Psychophysiol 51:45–58

    PubMed  Google Scholar 

  • de Heering A, de Liedekerke C, Deboni M, Rossion B (2010) The role of experience during childhood in shaping the other-race effect. Dev Sci 13:181–187

    PubMed  Google Scholar 

  • de Heering A, Rossion B, Maurer D (2012) Developmental changes in face recognition during childhood: evidence from upright and inverted faces. Cogn Dev 27:17–27

    Google Scholar 

  • de Moraes R, de Sousa BM, Fukusima S (2014) Hemispheric specialization in face recognition: from spatial frequencies to holistic/analytic cognitive processing. Psychol Neurosci 7:503–511

    Google Scholar 

  • De Renzi E (1986) Prosopagnosia in two patients with CT scan evidence of damage confined to the right hemisphere. Neuropsychologia 24:385–389

    PubMed  Google Scholar 

  • De Renzi E, Faglioni P, Grossi D, Nichelli P (1991) Apperceptive and associative forms of prosopagnosia. Cortex 27:213–221

    PubMed  Google Scholar 

  • de Schonen S, Gil de Diaz M, Mathivet E (1986) Hemispheric asymetry in face processing in infancy. In: Ellis HD, Jeeves MA, Newcombe F, Young A (eds) Aspects of face processing. Martinus Nijhof Publishers

    Google Scholar 

  • Deen B, Richardson H, Dilks DD, Takahashi A, Keil B, Wald LL, Kanwisher N, Saxe R (2017) Organization of high-level visual cortex in human infants. Nat Commun 8:13995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dehaene S, Cohen L (2007) Cultural recycling of cortical maps. Neuron 56:384–398

    CAS  PubMed  Google Scholar 

  • Dehaene S, Pegado F, Braga LW, Ventura P, Nunes Filho G, Jobert A, Dehaene-Lambertz G, Kolinsky R, Morais J, Cohen L (2010) How learning to read changes the cortical networks for vision and language. Science 330:1359–1364

    CAS  PubMed  Google Scholar 

  • Dehaene S, Cohen L, Morais J, Kolinsky R (2015) Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nature 16:234–244

    CAS  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015

    CAS  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Monzalvo K, Dehaene S (2018) The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biol 16(3):e2004103

    PubMed  PubMed Central  Google Scholar 

  • Delis DC, Robertson LC, Efron R (1986) Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia 24:205–214

    CAS  PubMed  Google Scholar 

  • Devlin JT, Jamison HL, Gonnerman LM, Matthews PM (2006) The role of the posterior fusiform gyrus in reading. J Cogn Neurosci 18:911–922

    PubMed  PubMed Central  Google Scholar 

  • DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. Trends Cogn Sci 11:333–341

    PubMed  Google Scholar 

  • Doty RW, Fei R, Hu S, Kavcic V (1999) Long-term reversal of hemispheric specialization for visual memory in a split-brain macaque. Behav Brain Res 102:99–114

    CAS  PubMed  Google Scholar 

  • Duchaine B, Nakayama K (2006) The Cambridge Face Memory Test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia 44:576–585

    PubMed  Google Scholar 

  • Duchaine B, Yovel G (2015) A revised neural framework for face processing. Annu Rev vis Sci 1:393–416

    PubMed  Google Scholar 

  • Dundas EM, Plaut DC, Behrmann M (2012) The joint development of hemispheric lateralization for words and faces. J Exp Psychol Gen 142:348–358

    PubMed  PubMed Central  Google Scholar 

  • Dundas EM, Plaut DC, Behrmann M (2014) An ERP investigation of the co-development of hemispheric lateralization of face and word recognition. Neuropsychologia 61:315–323

    PubMed  PubMed Central  Google Scholar 

  • Dundas EM, Plaut DC, Behrmann M (2015) Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization. J Cogn Neurosci 27:913–925

    PubMed  Google Scholar 

  • Edelman GM (1987) Neural Darwinism: the theory of neuronal group selection. Basic Books, New York

    Google Scholar 

  • Edelman GM, Finkel LH (1985) Neuronal group selection in the cerebral cortex. In: Gall E, Edelman G (eds) Dynamic aspects of neorcortical function. Wiley, New York, pp 653–695

    Google Scholar 

  • Eimer M, McCarthy RA (1999) Prosopagnosia and structural encoding of faces: evidence from event- related potentials. NeuroReport 5:255–259

    Google Scholar 

  • Ekstrand C, Neudorf J, Kress S, Borowsky R (2020) Structural connectivity predicts functional activation during lexical and sublexical reading. Neuroimage 218:117008

    PubMed  Google Scholar 

  • Elbich DB, Molenaar PCM, Scherf KS (2019) Evaluating the organizational structure and specificity of network topology within the face processing system. Hum Brain Mapp 40:2581–2595

    PubMed  PubMed Central  Google Scholar 

  • El-Boustani IP, Breton-Provencher JPK, Knott V, Okuno GW, Bito H (2018) Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360:1349–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis HD (1983) The role of the right hemisphere in face perception. In: Young AW (ed) Functions of the right cerebral hemisphere. Academic Press, London, pp 33–64

    Google Scholar 

  • Fan C, Chen S, Zhang L, Qi Z, Jin Y, Wang Q, Luo Y, Li H, Luo W (2015) NeuroImage N170 changes reflect competition between faces and identifiable characters during early visual processing. Neuroimage 110:32–38

    PubMed  Google Scholar 

  • Farah MJ (1990/2004) Visual agnosia, 2nd edn. MIT Press, Cambridge

  • Farah MJ (1991) Patterns of co-occurrence among the associative agnosias: implications for visual object recognition. Cogn Neuropsychol 8:1–19

    Google Scholar 

  • Farah MJ, Wilson KD, Drain M, Tanaka JN (1998) What is “special” about face perception? Psychol Rev 105:482–498

    CAS  PubMed  Google Scholar 

  • Feng X, Monzalvo K, Dehaene S, Dehaene-Lambertz G (2021) Evolution of reading and face circuits during the first three years of reading acquisition. Preprint. https://doi.org/10.31234/osf.io/e7vhm

  • Fernandes T, Leite I, Kolinsky R (2016) Into the looking glass: literacy acquisition and mirror invariance in preschool and first-grade children. Child Dev 87:2008–2025

    PubMed  Google Scholar 

  • Fernandes T, Arunkumar M, Huettig F (2021) The role of the written script in shaping mirror-image discrimination: evidence from illiterate, Tamil literate, and Tamil-Latin-alphabet bi-literate adults. Cognition 206:104493

    PubMed  Google Scholar 

  • Frässle S, Paulus FM, Krach S, Jansen A (2016a) Test–retest reliability of effective connectivity in the face perception network. Hum Brain Mapp 37:730–744

    PubMed  Google Scholar 

  • Frässle S, Krach S, Paulus FM, Jansen A (2016b) Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing. Sci Rep 6:27153

    PubMed  PubMed Central  Google Scholar 

  • Fu S, Chen Y, Smith S, Iversen S, Matthews PM (2002) Effects of word form on brain processing of written Chinese. Neuroimage 17:1538–1548

    PubMed  Google Scholar 

  • Gabay Y, Dundas E, Plaut D, Behrmann M (2017) Atypical perceptual processing of faces in developmental dyslexia. Brain Lang 173:41–51

    PubMed  Google Scholar 

  • Gao X, Gentile F, Rossion B (2018) Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping. Brain Struct Funct 223:2433–2454

    PubMed  Google Scholar 

  • Gao X, Vuong QC, Rossion B (2019) The cortical face network of the prosopagnosic patient PS with fast periodic stimulation in fMRI. Cortex 119:528–542

    PubMed  Google Scholar 

  • Gathers AD, Bhatt R, Corbly CR, Farley AB, Joseph JE (2004) Developmental shifts in cortical loci for face and object recognition. NeuroReport 15:1549–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gazzaniga M (1967) The split brain in man. Sci Am 217:24–29

    CAS  PubMed  Google Scholar 

  • Gazzaniga MS, LeDoux JE (1978) The integrated mind. Plenum Press

    Google Scholar 

  • Gazzaniga MS, Bogen JE, Sperry RW (1965) Observations on visual perception after disconnexion of the cerebral hemispheres in man. Brain 88:221–236

    CAS  PubMed  Google Scholar 

  • Germine LT, Duchaine B, Nakayama K (2011) Where cognitive development and aging meet: face learning ability peaks after age 30. Cognition 118:201–210

    PubMed  Google Scholar 

  • Gerrits R, Van der Haegen L, Brysbaert M, Vingerhoets G (2019) Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex 117:196–204

    PubMed  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain left–right asymmetries in temporal speech region. Science 161:186–187

    CAS  PubMed  Google Scholar 

  • Gilbert C, Bakan P (1973) Visual asymmetry in perception of faces. Neuropsychologia 11:355–362

    CAS  PubMed  Google Scholar 

  • Glezer LS, Jiang X, Riesenhuber M (2009) Report evidence for highly selective neuronal tuning to whole words in the “visual word form area.” Neuron 62:199–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glezer LS, Kim J, Rule J, Jiang X, Riesenhuber M (2015) Adding words to the brain’s visual dictionary: novel word learning selectively sharpens orthographic representations in the VWFA. J Neurosci 35:4965–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gliga T, Dehaene-Lambertz G (2007) Development of a view-invariant representation of the human head. Cognition 102:261–288

    PubMed  Google Scholar 

  • Goffaux V, Peters J, Haubrechts J, Schiltz C, Jansma B, Goebel R (2011) From coarse to fine? Spatial and temporal dynamics of cortical face processing. Cereb Cortex 21:467–476

    PubMed  Google Scholar 

  • Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, Gabrieli JDE, Grill-Spector K (2007) Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat Neurosci 10:512–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K (2018) Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat Commun 9:1–12

    Google Scholar 

  • Goren CC, Sarty M, Wu EYK (1975) Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56:544–549

    CAS  PubMed  Google Scholar 

  • Gotts SH, Joon J, Wallace GL, Ziad S, Saad RWC, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci 110:E3435–E3444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15(8):536–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grill-Spector K, Weiner KS, Kay K, Gomez J (2017) The functional neuroanatomy of human face perception. Annu Rev vis Sci 3:167–196

    PubMed  PubMed Central  Google Scholar 

  • Hagen S, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J (2020) Spatially dissociated intracerebral maps for face- and house-selective activity in the human ventral occipito-temporal cortex. Cereb Cortex 30:4026–4043

    PubMed  Google Scholar 

  • Hagen S, Lochy A, Jacques C, Maillard L, Colnat-Coulbois S, Rosson B (2021) Dissociated face-and word-selective intracerebral responses in the human ventral occipito-temporal cortex. bioRxiv https://doi.org/10.1101/2020.12.23.423819

  • Halgren E, Baudena P, Heit G, Clarke M, Marinkovic K (1994) Spatio-temporal stages in face and word processing. 1. Depth recorded potentials in the human occipital and parietal lobes. J Physiol 88:1–50

    CAS  Google Scholar 

  • Hamilton CR, Vermeire BA (1983) Discrimination of monkey faces by split-brain monkeys. Behav Brain Res 9:263–275

    CAS  PubMed  Google Scholar 

  • Hamilton CR, Vermeire BA (1988) Cognition, not handedness, is lateralized in monkeys. Behav Brain Sci 11(4):723–725

    Google Scholar 

  • Hannagan T, Amedi A, Cohen L, Dehaene-Lambertz G, Dehaene S (2015) Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends Cogn Sci 19:374–382

    PubMed  Google Scholar 

  • Harris A, Aguirre GK (2010) Neural tuning for face wholes and parts in human fusiform gyrus revealed by FMRI adaptation. J Neurophysiol 104:336–345

    PubMed  PubMed Central  Google Scholar 

  • Hasson U, Levy I, Behrmann M, Hendler T, Malach R (2002) Center-biased representation for characters in the human ventral visual stream. Neuron 34:479–490

    CAS  PubMed  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. In: Trends in cognitive sciences

  • Hecaen H, Angelergues R (1962) Agnosia for faces (prosopagnosia). Arch Neurol 7:92–100

    CAS  PubMed  Google Scholar 

  • Hellige JB (1993) Perspectives in cognitive neuroscience. Hemispheric asymmetry. What’s right and what’s left. . Harvard University Press

    Google Scholar 

  • Hellige JB, Sergent J (1986) Role of task factors in visual field asymmetries. Brain Cogn 5:200–222

    CAS  PubMed  Google Scholar 

  • Hervais-Adelman A, Kumar U, Mishra RK, Tripathi VN, Guleria A, Singh JP, Eisner F, Huettig F (2019) Learning to read recycles visual cortical networks without destruction. Sci Adv 5(9):eaax0262. https://doi.org/10.1126/sciadv.aax0262

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildesheim FE, Debus I, Kessler R, Thome I, Zimmermann KM, Steinsträter O, Sommer J, Kamp-Becker I, Stark R (2020) The trajectory of hemispheric lateralization in the core system of face processing: a cross-sectional functional magnetic resonance imaging pilot study. Front Psychol 11:507199

    PubMed  PubMed Central  Google Scholar 

  • Hillger LA, Koenig O (1991) Separable mechanisms in face processing: evidence from hemispheric specialization. J Cogn Neurosci 3(1):42–58

    CAS  PubMed  Google Scholar 

  • Hillis AE, Kane A, Barker P, Beauchamp N, Wityk R (2001) Neural substrates of the cognitive processes underlying reading: evidence from magnetic resonance perfusion imaging in hyperacute stroke. Aphasiology 15:919–931

    Google Scholar 

  • Hillis AE, Newhart M, Heidler J, Barker P, Herskovits E, Degaonkar M (2005) The roles of the “visual word form area” in reading. Neuroimage 24:548–559

    PubMed  Google Scholar 

  • Hills PJ, Lewis MB (2018) The development of face expertise: evidence for a qualitative change in processing. Cogn Dev 48:1–18

    Google Scholar 

  • Hirshorn EA, Wrencher A, Durisko C, Moore MW, Fiez JA (2016) Fusiform gyrus laterality in writing systems with different mapping principles: an artificial orthography training study. J Cogn Neurosci 28:882–894

    PubMed  PubMed Central  Google Scholar 

  • Huettig F, Mishra RK (2014) How literacy acquisition affects the illiterate mind—a critical examination of theories and evidence. Lang Linguist Compass 8:401–427

    Google Scholar 

  • Huettig F, Kolinsky R, Lachmann T (2018) The culturally co-opted brain: how literacy affects the human mind. Lang Cogn Neurosci 33:275–277

    Google Scholar 

  • Itier RJ, Taylor MJ (2004) Effects of repetition and configural changes on the development of face recognition processes. Dev Sci 7(4):469–487

    PubMed  Google Scholar 

  • Ivry R, Robertson LC (1998) The two sides of perception. MIT Press, London

    Google Scholar 

  • Jacobs RA, Jordan MI (1992) Computational consequences of a bias toward short connections. J Cogn Neurosci 4:323–336

    CAS  PubMed  Google Scholar 

  • Jacques C, Rossion B (2004) Concurrent processing reveals competition between visual representations of faces. NeuroReport 15:2417–2421

    PubMed  Google Scholar 

  • Jacques C, Rossion B (2009) The initial representation of individual faces in the right occipito-temporal cortex is holistic: electrophysiological evidence from the composite face illusion. J vis 9(6):8–16

    PubMed  Google Scholar 

  • Jacques C, Rossion B, Volfart A, Brissart H, Colnat-Coulbois S, Maillard L, Jonas J (2020) The neural basis of rapid unfamiliar face individuation with human intracerebral recordings. Neuroimage 221:117174

    PubMed  Google Scholar 

  • Jeffreys DA (1989) A face-responsive potential recorded from the human scalp. Exp Brain Res 78:193–202

    CAS  PubMed  Google Scholar 

  • Johnson MH, Dziurawiec S, Ellis HD, Morton J (1991) Newborns’ preferential tracking of faces and its subsequent decline. Cognition 40:1–19

    CAS  PubMed  Google Scholar 

  • Jonas J, Rossion B (2021) Intracerebral electrical stimulation to understand the neural basis of human face identity recognition. Eur J Neurosci. https://doi.org/10.1111/ejn.15235

    Article  PubMed  Google Scholar 

  • Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvee M, Guye M, Vignal J-P, Vespignani H, Rossion B, Maillard L (2012) Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–288

    CAS  PubMed  Google Scholar 

  • Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S, Maillard L, Rossion B (2016) A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc Natl Acad Sci USA 113:E4088–E4097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph JE, Gathers AD, Bhatt RS (2011) Progressive and regressive developmental changes in neural substrates for face processing: testing specific predictions of the Interactive Specialization account. Dev Sci 14:227–241

    PubMed  PubMed Central  Google Scholar 

  • Joyce C, Rossion B (2005) The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site. Clin Neurophysiol 116:2613–2631

    PubMed  Google Scholar 

  • Kanwisher N, Yovel G (2006) The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci 361:2109–2128

    PubMed  PubMed Central  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Yoon HW, Park HW (2004) spatiotemporal brain activation pattern during word/picture perception by native Koreans. Cogn Neurosci Neuropsychol 15:7

    Google Scholar 

  • Knecht S, Deppe M, Dräger B, Bobe L, Lohmann H, Ringelstein E, Henningsen H (2000) Language lateralization in healthy right-handers. Brain 123:74–81

    PubMed  Google Scholar 

  • Kolb B, Milner B, Taylor L (1983) Perception of faces by patients with localized cortical excisions. Can J Psychol Revue Canadienne De Psychologie 37:8–18

    CAS  Google Scholar 

  • Kolinsky R, Fernandes T (2014) A cultural side effect: learning to read interferes with identity processing of familiar objects. Front Psychol 5:1224

    PubMed  PubMed Central  Google Scholar 

  • Kolinsky R, Verhaeghe A, Fernandes T, Mengarda EJ, Grimm-Cabral L, Morais J (2011) Enantiomorphy through the looking glass: literacy effects on mirror-image discrimination. J Exp Psychol Gen 140:210–238

    PubMed  Google Scholar 

  • Kriegeskorte N, Mur M, Bandettini P (2008) Representational similarity analysis: connecting the branches of systems neuroscience. Front Syst Neurosci 2:4. https://doi.org/10.3389/neuro.06.004.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Kronbichler M, Hutzler F, Wimmer H, Mair A, Staffen W, Ladurner G (2004) The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. Neuroimage 21:946–953

    PubMed  Google Scholar 

  • Kubota EC, Joo SJ, Huber E, Yeatman JD (2019) Word selectivity in high-level visual cortex and reading skill. Dev Cogn Neurosci 36:100593

    PubMed  Google Scholar 

  • Kuefner D, de Heering A, Jacques C, Palmero-Soler E, Rossion B (2010) Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face-sensitivity from 4 years to adulthood. Front Hum Neurosci 3(January):67. https://doi.org/10.3389/neuro.09.067.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Kühn CD, Wilms IL, Dalrymple KA, Gerlach C, Starrfelt R (2021) Face recognition in beginning readers: investigating the potential relationship between reading and face recognition during the first year of school. Vis Cogn 0(0):1–12

    Google Scholar 

  • Lamb MR, Robertson LC, Knight RT (1989) Attention and interference in the processing of hierarchical patterns: inferences from patients with right and left temporal-parietal lesions. Neuropsychologia 27:471–548

    CAS  PubMed  Google Scholar 

  • Lamb MR, Robertson LC, Knight RT (1990) Component mechanisms underlying the processing of hierarchically organized patterns: inferences from patients with unilateral cortical lesions. J Exp Psychol Learn Mem Cogn 16:471–483

    CAS  PubMed  Google Scholar 

  • Landis T, Cummings JL, Christen L, Bogen JE, Imhof HG (1986) Are unilateral right posterior cerebral lesions sufficient to cause prosopagnosia? Clinical and radiological findings in six additional patients. Cortex 22:243–252

    CAS  PubMed  Google Scholar 

  • LeDoux J (1983) Cerebral asymmetry and the integrated function of the brain. In Young AW (ed) Functions of the right hemisphere. Academic Press, New York, pp 203–216

    Google Scholar 

  • Le Grand R, Mondloch CJ, Maurer D, Brent HP (2003) Expert face processing requires visual input to the right hemisphere during infancy. Nat Neurosci 6:1108–1112

    PubMed  Google Scholar 

  • Leleu A, Rekow D, Poncet F, Schaal B, Durand K, Rossion B, Baudouin J-Y (2020) Maternal odor shapes rapid face categorization in the infant brain. Dev Sci 23:e12877

    PubMed  Google Scholar 

  • Lerma-Usabiaga G, Carreiras M, Paz-Alonso PM (2018) Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc Natl Acad Sci USA 115:E9981–E9990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine D, Calvanio R (1989) Prosopagnosia: a defect in visual configural processing. Brain Cogn 10:149–170

    CAS  PubMed  Google Scholar 

  • Levy J, Trevarthen C, Sperry RW (1972) Perception of bilateral chimeric figures following hemispheric deconnexion. Brain 95:61–78

    CAS  PubMed  Google Scholar 

  • Lhermitte F, Chain F, Escourolle R, Ducarne B, Pillon B (1972) Anatomical study of a case of prosopagnosia. Rev Neurol (paris) 126(5):329–346

    CAS  Google Scholar 

  • Li S, Lee K, Zhao J, Yang Z, He S, Weng X (2013) Neural competition as a developmental process: early hemispheric specialization for word processing delays specialization for face processing. Neuropsychologia 51:950–959

    PubMed  PubMed Central  Google Scholar 

  • Li J, Osher DE, Hansen HA, Saygin Z (2020) Innate connectivity patterns drive the development of the visual word form area. Sci Rep 10(1):1–13

    Google Scholar 

  • Liu C, Zhang WT, Tang YY, Mai XQ, Chen HC, Tardif T, Luo YJ (2008) The Visual Word Form Area: evidence from an fMRI study of implicit processing of Chinese characters. Neuroimage 40:1350–1361

    PubMed  Google Scholar 

  • Liu-Shuang J, Norcia AM, Rossion B (2014) An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia 52:57–72

    PubMed  Google Scholar 

  • Lochy A, Van Belle G, Rossion B (2015) A robust index of lexical representation in the left occipitotemporal cortex as evidenced by EEG responses to fast periodic visual stimulation. Neuropsychologia 66:18–31

    PubMed  Google Scholar 

  • Lochy A, Van Reybroeck M, Rossion B (2016) Left cortical specialization for visual letter strings predicts rudimentary knowledge of letter-sound association in preschoolers. Proc Natl Acad Sci USA 113(30):8544–8549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lochy A, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J (2018) Selective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings. Proc Natl Acad Sci USA 115(32):E7595–E7604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lochy A, de Heering A, Rossion B (2019) The non-linear development of the right hemispheric specialization for human face perception. Neuropsychologia 126:10–19

    PubMed  Google Scholar 

  • Lochy A, Schiltz C, Rossion B (2020) The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Dev Sci 23:1–16

    Google Scholar 

  • Malik-Moraleda S, Orihuela K, Carreiras M, Duñabeitia JA (2018) The consequences of literacy and schooling for parsing strings. Lang Cogn Neurosci 33:293–299

    Google Scholar 

  • Mandler G (1980) Recognizing: the judgment of previous occurrence. Psychol Rev 87:252–271

    Google Scholar 

  • Martelli M, Majaj NJ, Pelli DG (2005) Are faces processed like words? A diagnostic test for recognition by parts. J vis 5(1):58–70

    PubMed  Google Scholar 

  • Martin A, Schurz M, Kronbichler M, Richlan F (2015) Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies. Hum Brain Mapp 36:1963–1981

    PubMed  PubMed Central  Google Scholar 

  • Martin L, Durisko C, Moore MW, Coutanche MN, Chen D, Fiez JA (2019) The VWFA is the home of orthographic learning when houses are used as letters. Eneuro. https://doi.org/10.1523/ENEURO.0425-17.2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattson AJ, Levin HS, Grafman J (2000) A case of prosopagnosia following moderate closed head injury with left hemisphere focal lesion. Cortex 36:125–137

    CAS  PubMed  Google Scholar 

  • Maurer U, Brem S, Kranz F, Bucher K, Benz R, Halder P, Steinhausen HC, Brandeis D (2006) Coarse neural tuning for print peaks when children learn to read. Neuroimage 33:749–758

    PubMed  Google Scholar 

  • McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299

    PubMed  Google Scholar 

  • McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the Human fusiform gyrus. J Cogn Neurosci 9:605–610

    CAS  PubMed  Google Scholar 

  • McKone E, Crookes K, Jeffery L, Dilks DD (2012) A critical review of the development of face recognition: experience is less important than previously believed. Cogn Neuropsychol 29(1–2):174–212

    PubMed  Google Scholar 

  • Meadows JC (1974) The anatomical basis of prosopagnosia. J Neurol Neurosurg Psychiatry 37:489–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng M, Cherian T, Singal G, Sinha P (2012) Lateralization of face processing in the human brain. Proc Biol Sci 279:2052–2061

    PubMed  PubMed Central  Google Scholar 

  • Merzenich M, Recanzone G, Jenkins WM, Allard TT, Nudo RJ (1988) Cortical representational plasticity. In: Rakic P, Singer W (eds) Neurobiology of neo-cortex. Wiley, New York, pp 41–67

    Google Scholar 

  • Monzalvo K, Fluss J, Billard C, Dehaene S, Dehaene-lambertz G (2012) Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage 61:258–274

    PubMed  Google Scholar 

  • Moore MW, Durisko C, Perfetti CA, Fiez JA (2014) Learning to read an alphabet of human faces produces left-lateralized training effects in the fusiform gyrus. J Cogn Neurosci 26:896–913

    PubMed  Google Scholar 

  • Morrison DJ, Schyns PG (2001) Usage of spatial scales for the categorization of faces, objects, and scenes. Psychon Bull Rev 8:454–469

    CAS  PubMed  Google Scholar 

  • Näsänen R (1999) Spatial frequency bandwidth used in the recognition of facial images. Vis Res 39(23):3824–3833

    PubMed  Google Scholar 

  • Natu VS, Barnett MA, Hartley J, Gomez J, Stigliani A, Grill-Spector K (2016) Development of neural sensitivity to face identity correlates with perceptual discriminability. J Neurosci 36:10893–10917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cogn Psychol 9:353–438

    Google Scholar 

  • Nestor A, Behrmann M, Plaut DC (2013) The neural basis of visual word form processing: a multivariate investigation. Cereb Cortex 23:1673–1684

    PubMed  Google Scholar 

  • Newcombe F, de Haan EHF, Ross J, Young AW (1989) Face processing, laterality and contrast sensitivity. Neuropsychologia 27:523–538

    CAS  PubMed  Google Scholar 

  • Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J vis 15(6):1–46

    Google Scholar 

  • Nordt M, Gomez J, Natu VS et al (2021) Cortical recycling in high-level visual cortex during childhood development. Nat Hum Behav (2021). https://doi.org/10.1038/s41562-021-01141-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Olulade OA, Flowers DL, Napoliello EM, Eden GF (2013) Developmental differences for word processing in the ventral stream. Brain Lang 125:134–145

    PubMed  Google Scholar 

  • Olulade A, Seydell-Greenwald A, Chambers CE, Turkeltaub PE, Dromerick AW, Berl MM, Gaillard WD, Newport EL (2020) The neural basis of language development: changes in lateralization over age. Proc Natl Acad Sci USA 117:23477–23483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orihuela KB, Carreiras M, Dunabeita JA (2013) Does literacy change face recognition? In: Poster presented at 54th annual meeting of the Psychonomic Society, Toronto, November

  • Ossowski A, Behrmann M (2015) Left hemisphere specialization for word reading potentially causes, rather than results from, a left lateralized bias for high spatial frequency visual information. Cortex 72:27–39

    PubMed  Google Scholar 

  • Otsuka Y (2014) Face recognition in infants: a review of behavioral and near-infrared spectroscopic studies. Jpn Psychol Res 56:76–90

    Google Scholar 

  • Overman WH, Doty RW (1982) Hemispheric specialization displayed by man but not macaques for analysis of faces. Neuropsychologia 20:113–128

    PubMed  Google Scholar 

  • Packheiser J, Pusch R, Stein CC, Güntürkün O, Lachnit H, Uengoer MQ (2020) How competitive is cue competition? J Exp Psychol 73:104–114

    Google Scholar 

  • Parkin AJ, Williamson P (1987) Cerebral lateralisation at different stages of facial processing. Cortex 23(1):99–110

    CAS  PubMed  Google Scholar 

  • Peelen MV, Glaser B, Vuilleumier P, Eliez S (2009) Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev Sci 12:F16–F25

    PubMed  Google Scholar 

  • Pegado F, Comerlato E, Ventura F, Jobert A, Nakamura K, Buiatti M, Ventura P, Dehaene-Lambertz G, Kolinsky R, Morais J, Braga LW, Cohen L, Dehaene S (2014a) Timing the impact of literacy on visual processing. Proc Natl Acad Sci USA 111:E5233–E5242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pegado F, Nakamura K, Braga LW, Ventura P, Nunes Filho G, Pallier C, Jobert A, Morais J, Cohen L, Kolinsky R, Dehaene S (2014b) Literacy breaks mirror invariance for visual stimuli: a behavioral study with adult illiterates. J Exp Psychol Gen 143:887–894

    PubMed  Google Scholar 

  • Peirce JW, Kendrick KM (2002) Functional asymmetry in sheep temporal cortex. NeuroReport 13:2395–2399

    PubMed  Google Scholar 

  • Peirce JW, Leigh AE, Kendrick KM (2001) Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep. Neuropsychologia 38:475–483

    Google Scholar 

  • Perfetti CA (1992) The representation problem in reading acquisition. Reading acquisition. Lawrence Erlbaum Associates Inc

    Google Scholar 

  • Perrachione TK, Del Tufo SN, Winter R, Murtagh J, Cyr A, Chang P, Halverson K, Ghosh SS, Christodoulou JA, Gabrieli JDE (2016) Dysfunction of rapid neural adaptation in dyslexia. Neuron 92:1383–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrett DI (2012) In your face: the new science of human attraction. Macmillan International Higher Education

    Google Scholar 

  • Perrett DI, Mistlin AJ, Chitty AJ, Smith PAJ, Potter DD, Broennimann R, Harries MH (1988) Specialized face processing and hemispheric asymmetry in man and monkey: evidence from single unit and reaction time studies. Behav Brain Res 29:245–258

    CAS  PubMed  Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589

    CAS  PubMed  Google Scholar 

  • Peterzell DH (1991) On the nonrelationship between spatial frequency and cerebral hemispheric competence. Brain Cogn 15:62–68

    CAS  PubMed  Google Scholar 

  • Peterzell DH (1997) Hemispheric symmetries in the identification of band-pass filtered letters: reply to Christman et al. (1997). Psychon Bull Rev 4:285–287

    CAS  PubMed  Google Scholar 

  • Pinel P, Lalanne C, Bourgeron T, Fauchereau F, Poupon C, Artiges E, Le Bihan D, Dehaene-Lambertz G, Dehaene S (2015) Genetic and environmental influences on the visual word form and fusiform face areas. Cereb Cortex 25:2478–2493

    PubMed  Google Scholar 

  • Pitcher D, Ungerleider LG (2021) Evidence for a third visual pathway specialized for social perception. Trends Cogn Sci 25:100–110

    PubMed  Google Scholar 

  • Pitcher D, Walsh V, Yovel G et al (2007) TMS evidence for the involvement of the right occipital face area in early face processing. Curr Biol 17:1568–1573

    CAS  PubMed  Google Scholar 

  • Posner M, Carr T (1992) Lexical access and the brain: anatomical constraints on cognitive models of word recognition. Am J Psychol 105:1–26

    CAS  PubMed  Google Scholar 

  • Price CJ, Devlin JT (2003) The myth of the visual word form area. Neuroimage 19:473–481

    PubMed  Google Scholar 

  • Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyles JA, Verstynen TD, Schneider W, Tarr MJ (2013) Explicating the face perception network with white matter connectivity. PLoS ONE 8(4):e61611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quek GL, Liu-Shuang J, Goffaux V, Rossion B (2018) Ultra-coarse, single-glance human face detection in a dynamic visual stream. Neuroimage 176:465–476

    PubMed  Google Scholar 

  • Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C et al (2014) Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci 34:12828–12836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regan D (1966) An effect of stimulus colour on average steady-state potentials evoked in man. Nature 210(5040):1056–1057

    CAS  PubMed  Google Scholar 

  • Reicher GM (1969) Perceptual recognition as a function of meaningfulness of stimulus material. J Exp Psychol 81:275–280

    CAS  PubMed  Google Scholar 

  • Richlan F (2012) Developmental dyslexia: dysfunction of a left hemisphere reading network. Front Human Neurosci 6:120. https://doi.org/10.3389/fnhum.2012.00120

    Article  Google Scholar 

  • Rekow D, Durand K, Baudouin J-Y, Rossion B, Leleu A (2020) Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: further evidence for the role of intersensory congruency in perceptual development. Cogn Dev 55:100930

    Google Scholar 

  • Rekow D, Baudouin J-Y, Poncet F, Damon F, Durand K, Schaal B, Rossion B, Leleu A (2021) Odor-driven face pareidolia in the infant brain. Proc Natl Acad Sci USA 118(21):e2014979118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richlan F (2020) The functional neuroanatomy of developmental dyslexia across languages and writing systems. Front Psychol. https://doi.org/10.3389/fpsyg.2020.00155

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzolatti G, Umiltà C, Berlucchi G (1971) Opposite superiorities of the right and left cerebral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain 94:431–442

    CAS  PubMed  Google Scholar 

  • Robertson LC, Lamb MR, Knight RT (1988) Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. J Neurosci 8:3757–4376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson AK, Plaut DC, Behrmann M (2017) Word and face processing engage overlapping distributed networks: evidence from RSVP and EEG investigations. J Exp Psychol Gen 146:943

    PubMed  Google Scholar 

  • Rosselli M, Ardila A, Matute E, Vélez-Uribe I (2014) Language development across the life span: a neuropsychological/neuroimaging perspective. Neurosci J 2014:585237

    PubMed  PubMed Central  Google Scholar 

  • Rossion B, Kung C-C, Tarr MJ (2004) Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proc Natl Acad Sci USA 101(40):14521–14526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossion B, Collins D, Goffaux V, Curran T (2007) Long-term expertise with artificial objects increases visual competition with early face categorization processes. J Cogn Neurosci 19(3):543–555

    PubMed  Google Scholar 

  • Rossion B, Torfs K, Jacques C, Liu-Shuang J (2015) Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J vis 15(1):18

    PubMed  Google Scholar 

  • Rossion B (2008) Picture-plane inversion leads to qualitative changes of face perception. Acta Physiol (oxf) 128(2):274–289

    Google Scholar 

  • Rossion B (2009) Distinguishing the cause and consequence of face inversion: the perceptual field hypothesis. Acta Physiol (oxf) 132:300–312

    Google Scholar 

  • Rossion B (2013) The composite face illusion: a window to our understanding of holistic face perception. Vis Cogn 121:139–253

    Google Scholar 

  • Rossion B (2018a) Damasio’s error—prosopagnosia with intact within-category object recognition. J Neuropsychol 12:357–388

    PubMed  Google Scholar 

  • Rossion B (2018b) Prosopdysgnosia? What could it tell us about the neural organization of face and object recognition? Cogn Neuropsychol 35:98–101

    PubMed  Google Scholar 

  • Rossion B, Jacques C (2011) The N170: understanding the time-course of face perception in the human brain. In: Luck S, Kappenman E (eds) The Oxford handbook of ERP components. Oxford University Press, Oxford, pp 115–142

    Google Scholar 

  • Rossion B, Taubert J (2019) What can we learn about human individual face recognition from experimental studies in monkeys? Vis Res 157:142–158

    PubMed  Google Scholar 

  • Rossion B, Dricot L, Devolder A, Bodart JM, Crommelinck M, De Gelder B, Zoontjes R (2000) Hemispheric asymmetries for whole-based and part-based face processing in the human fusiform gyrus. J Cogn Neurosci 12:793–802

    CAS  PubMed  Google Scholar 

  • Rossion B, Joyce CA, Cottrell GW, Tarr MJ (2003) Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage 20(3):1609–1624. https://doi.org/10.1016/j.neuroimage.2003.07.010

    Article  PubMed  Google Scholar 

  • Rossion B, Dricot L, Goebel R, Busigny T (2011) Holistic face categorization in higher-level cortical visual areas of the normal and prosopagnosic brain: towards a non-hierarchical view of face perception. Front Hum Neurosci 4:225

    PubMed  PubMed Central  Google Scholar 

  • Rossion B, Hanseeuw B, Dricot L (2012) Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn 79(2):138–157. https://doi.org/10.1016/j.bandc.2012.01.001

    Article  PubMed  Google Scholar 

  • Rossion B, Retter TL, Liu-Shuang J (2020) Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci 52:4283–4344

    PubMed  Google Scholar 

  • Salmelin R, Service E, Kiesilä P, Uutela K, Salonen O (1996) Impaired visual word processing in dyslexia revealed with magnetoencephalography. Ann Neurol 40:157–162

    CAS  PubMed  Google Scholar 

  • Sangrigoli S, de Schonen S (2004) Effect of visual experience on face processing: a developmental study of inversion and non-native effects. Dev Sci 7:74–87

    PubMed  Google Scholar 

  • Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD, Feather J, Gaab N, Gabrieli JDE, Kanwisher N (2016) Connectivity precedes function in the development of the visual word form area. Nat Neurosci 19:1250–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherf KS, Behrmann M, Humphreys K, Luna B (2007) Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev Sci 10(4):F15-F30. https://doi.org/10.1111/j.1467-7687.2007.00595.x

    Article  PubMed  Google Scholar 

  • Schiltz C, Rossion B (2006) Faces are represented holistically in the human occipito-temporal cortex. Neuroimage 32(3):1385–1394. https://doi.org/10.1016/j.neuroimage.2006.05.037

    Article  PubMed  Google Scholar 

  • Schwarzer G (2000) Development of face processing: the effect of face inversion. Child Dev 71:391–401

    CAS  PubMed  Google Scholar 

  • Sergent J (1982a) The cerebral balance of power: confrontation or cooperation? J Exp Psychol Hum Percept Perform 8:253–272

    CAS  PubMed  Google Scholar 

  • Sergent J (1982b) Theoretical and methodological consequences of variations in exposure duration in visual laterality studies. Percept Psychophys 31:451–461

    CAS  PubMed  Google Scholar 

  • Sergent J (1983) Role of input in visual hemispheric asymmetries. Psychol Bull 93:481–512

    CAS  PubMed  Google Scholar 

  • Sergent J (1984) An investigation into component and configural processes underlying face perception. Br J Psychol 75:221–242

    PubMed  Google Scholar 

  • Sergent J (1985) Influence of input and task factors in hemispheric involvement in face processing. J Exp Psychol Hum Percept Perform 11:253–272

    Google Scholar 

  • Sergent J (1986) Microgenesis of face perception. In: Ellis HD, Jeeves MA, Newcombe F, Young AM (eds) Aspects of face processing. Martinus Nijhoff, Dordrecht, pp 17–33

    Google Scholar 

  • Sergent J (1987) Failures to confirm the spatial-frequency hypothesis: fatal blow or healthy complication? Can J Psychol 41:412–428

    CAS  PubMed  Google Scholar 

  • Sergent J (1988) Face perception and the right hemisphere. In: Weiskrantz L (ed) Thought without language. Oxford University Press ed., Oxford, pp 108–131

    Google Scholar 

  • Sergent J, Hellige JB (1986) Role of input factors in visual-field asymmetries. Brain Cogn 5(2):174–199

    CAS  PubMed  Google Scholar 

  • Sergent J, Signoret JL (1992) Varieties of functional deficits in prosopagnosia. Cereb Cortex 2:375–388

    CAS  PubMed  Google Scholar 

  • Sergent J, Ohta S, MacDonald B (1992) Functional neuroanatomy of face and object processing. A Positron Emission Tomography study. Brain 115(Pt 1):15–36

    PubMed  Google Scholar 

  • Sigurdardottir HM, Ívarsson E, Kristinsdóttir K, Kristjánsson Á (2015) Impaired recognition of faces and objects in dyslexia: evidence for ventral stream dysfunction? Neuropsychology 29:739–750

    PubMed  Google Scholar 

  • Skeide MA, Kumar U, Mishra RK, Tripathi VN, Guleria A, Singh JP, Eisner F, Huettig F (2017) Learning to read alters cortico-subcortical cross-talk in the visual system of illiterates. Sci Adv 3(5):e1602612

    PubMed  PubMed Central  Google Scholar 

  • Sorensen, TA, Overgaard MS (2018) Prosopagnosia or prosopdysgnosia: facing up to a change of concepts. In: 2018 10th international conference on knowledge and smart technology (KST)

  • Springer SP, Deutsch G (1981) Left brain, right brain. W. H. Freeman, Francisco

    Google Scholar 

  • Srebro R (1985) Localization of visually evoked cortical activity in humans. J Physiol 360:233–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starrfelt R, Gerlach C (2007) The visual what for area: words and pictures in the left fusiform gyrus. Neuroimage 35(1):334–342

    PubMed  Google Scholar 

  • Stevens WD, Kravitz DJ, Peng CS, Tessler MH, Martin A (2017) Privileged functional connectivity between the visual word form area and the language system. J Neurosci 37:5288–5297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugden NA, Mohamed-Ali MI, Moulson MC (2014) I spy with my little eye: typical, daily exposure to faces documented from a first-person infant perspective. Dev Psychobiol 56:249–261

    PubMed  Google Scholar 

  • Szwed M, Dehaene S, Kleinschmidt A, Eger E, Valabrègue R, Amadon A, Cohen L (2011) Specialization for written words over objects in the visual cortex. Neuroimage 56:330–344

    PubMed  Google Scholar 

  • Tan LH, Laird AR, Li K, Fox PT (2005) Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum Brain Mapp 25:83–91

    PubMed  PubMed Central  Google Scholar 

  • Tanaka J, Farah MJ (1993) Parts and wholes in face recognition. Quart J Exp Psychol 46A:225–245

    Google Scholar 

  • Tarkiainen A, Helenius P, Hansen PC, Cornelissen PL, Salmelin R (1999) Dynamics of letter string perception in the human occipitotemporal cortex. Brain 122(Pt 1):2119–2132

    PubMed  Google Scholar 

  • Thesen T, McDonald CR, Carlson C, Doyle W, Cash S, Sherfey J, Felsovalyi O, Girard H, Barr W, Devinsky O, Kuzniecky R, Halgren E (2012) Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat Commun 3:1284

    PubMed  Google Scholar 

  • Thiebaut De Schotten M, Cohen L, Amemiya E, Braga LW, Dehaene S (2014) Learning to read improves the structure of the arcuate fasciculus. Cereb Cortex 24:989–995

    PubMed  Google Scholar 

  • Todorov A (2017) Face value: the irresistible influence of first impressions. Princeton University Press

    Google Scholar 

  • Tranel D, Vianna E, Manzel K, Damasio H, Grabowski T (2009) Neuroanatomical correlates of the Benton Facial Recognition Test and judgment of Line Orientation Test. J Clin Exp Neuropsychol 31:219–233

    PubMed  PubMed Central  Google Scholar 

  • Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci USA 105:19514–19519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turati C, Simion F (2002) Newborns’ recognition of changing and unchanging aspects of schematic faces. J Exp Child Psychol 83:239–261

    PubMed  Google Scholar 

  • Turkeltaub PE, Gareau L, Flowers DL, Zeffiro TA, Eden GF (2003) Development of neural mechanisms for reading. Nat Neurosci 6(7):767–773

    CAS  PubMed  Google Scholar 

  • Tzavaras A, Merienne L, Masure MC (1973) Prosopagnosie, amnésie et troubles du langage par lésion temporale gauche chez un sujet gaucher. Encephale 62:382–394

    CAS  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, De Schonen S, Crivello F, Reutter B, Aujard Y, Mazoyer B (2002) Neural correlates of woman face processing by 2-month-old infants. Neuroimage 15:454–461

    PubMed  Google Scholar 

  • Van Kleeck MH (1989) Hemispheric differences in global versus local processing of hierarchical visual stimuli by normal subjects: new data and a meta-analysis of previous studies. Neuropsychologia 27:1165–1178

    PubMed  Google Scholar 

  • Van Belle G, de Graef P, Verfaillie K, Busigny T, Rossion B (2010) Whole not hole: expert face recognition requires holistic perception. Neuropsychologia 48:2609–2620

    Google Scholar 

  • Van Paridon J, Ostarek M, Arunkumar M, Huettig F (2020) Does neuronal recycling result in destructive competition? The influence of learning to read on the recognition of faces. Psychol Sci 32:459–465

    Google Scholar 

  • Van der Haegen L, Brysbaert M (2018) The relationship between behavioral language laterality, face laterality and language performance in left-handers. PLoS ONE 13:1–22

    Google Scholar 

  • Van der Haegen L, Cai Q, Brysbaert M (2012) Colateralization of Broca’s area and the visual word form area in left-handers: fMRI evidence. Brain Lang 122:171–178

    PubMed  Google Scholar 

  • Ventura P, Fernandes T, Cohen L, Morais J, Kolinsky R, Dehaene S (2013) Literacy acquisition reduces the influence of automatic holistic processing of faces and houses. Neurosci Lett 554:105–109. https://doi.org/10.1016/j.neulet.2013.08.068

    Article  CAS  PubMed  Google Scholar 

  • Vermeire BA, Hamilton CR (1998) Inversion effect for faces in split-brain monkeys. Neuropsychology 36:1003–1014

    CAS  Google Scholar 

  • Vermeire BA, Hamilton CR, Erdmann AL (1998) Right-hemispheric superiority in split-brain monkeys for learning and remembering facial discriminations. Behav Neurosci 112(5):1048–1061

    CAS  PubMed  Google Scholar 

  • Vettori S, Dzhelyova M, Van der Donck S, Jacques C, Steyaert J, Rossion B, Boets B (2019) Reduced neural sensitivity to rapid individual face discrimination in autism spectrum disorder. Neuroimage Clin 21:101613

    PubMed  Google Scholar 

  • Vidal JR, Ossandón T, Jerbi K, Dalal SS, Minotti L, Ryvlin P, Kahane P, Lachaux J-P (2010) Category-specific visual responses: an intracranial study comparing gamma, beta, alpha, and ERP response selectivity. Front Hum Neurosci 4:195. https://doi.org/10.3389/fnhum.2010.00195

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinckier F, Dehaene S, Jobert A, Dubus JP, Sigman M, Cohen L (2007) Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55:143–156

    CAS  PubMed  Google Scholar 

  • Vogel AC, Petersen SE, Schlaggar B (2012) The left occipitotemporal cortex does not show preferential activity for words. Cereb Cortex 22:2715–2732

    PubMed  PubMed Central  Google Scholar 

  • Willems RM, Peelen MV, Hagoort P (2010) Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cereb Cortex 20:1719–1725

    PubMed  Google Scholar 

  • Wong ACN, Wong YK, Lui KFH, Ng TYK, Ngan VSH (2019) Sensitivity to configural information and expertise in visual word recognition. J Exp Psychol Hum Percept Perform 45:82–99

    PubMed  Google Scholar 

  • Wright H, Wardlaw J, Young AW, Zeman A (2006) Prosopagnosia following nonconvulsive status epilepticus associated with a left fusiform gyrus malformation. Epilepsy Behav 9:197–203

    PubMed  Google Scholar 

  • Wu C, Ho MR, Chen SA (2012) NeuroImage—a meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. NeuroImage 63:381–391

    PubMed  Google Scholar 

  • Yan X, Goffaux V, Rossion B (2020) Coarse-to-fine(r) automatic familiar face recognition in the human brain. Cereb Cortex.

  • Yin RK (1969) Looking at upside-down faces. J Exp Psychol 81:141–145

    Google Scholar 

  • Yoncheva YN, Blau VC, Maurer U, McCandliss BD (2010) Attentional focus during learning impacts N170 ERP responses to an artificial script. Dev Neuropsychol 35(4):423–445

    PubMed  PubMed Central  Google Scholar 

  • Yoncheva YN, Wise J, McCandliss B (2015) Hemispheric specialization for visual words is shaped by attention to sublexical units during initial learning. Brain Lang 145:23–33

    PubMed  Google Scholar 

  • Young AW, Hellawell D, Hay DC (1987) Configurational information in face perception. Perception 16:747–759

    CAS  PubMed  Google Scholar 

  • Yovel G (2016) Neural and cognitive face-selective markers: an integrative review. Neuropsychologia 83:5–13

    PubMed  Google Scholar 

  • Yovel G, Levy J, Grabowecky M, Paller KAJ (2003) Neural correlates of the left-visual-field superiority in face perception appear at multiple stages of face processing. J Cogn Neurosci 15:462–474

    PubMed  Google Scholar 

  • Yovel G, Tambini A, Brandman T (2008) The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia 46:3061–3068

    PubMed  Google Scholar 

  • Zangenehpour S, Chaudhuri A (2005) Patchy organization and asymmetric distribution of the neural correlates of face processing in monkey inferotemporal cortex. Curr Biol 15(11):993–1005

    CAS  PubMed  Google Scholar 

  • Zhang L, Tan A, Schreiner C et al (2003) Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature 424:201–205

    CAS  PubMed  Google Scholar 

  • Zhang MX, Jiang T, Mei LL, Yang HM, Chen CS, Xue G, Dong Q (2011) It’s a word: early electrophysiological response to the character likeness of pictographs. Psychophysiology 48:950–959

    PubMed  Google Scholar 

  • Zhen Z, Yang Z, Huang L, Kong XZ, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. Neuroimage 113:13–25

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a LUE (Lorraine Université d’Excellence) program, a 2018 project from the Région Grand Est and Face perception INTER project (INTER/FNRS/15/11015111) funded by the Luxembourgish Fund for Scientific Research (FNR, Luxembourg) and by the Belgian Funds for Scientific Research (FNRS; Grant nr: PDR T.0207.16 FNRS). The authors thank Talia Retter, Simen Hagen and three anonymous reviewers for their helpful comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BR initiated this review, BR and AL performed literature search, drafted and critically revised the work.

Corresponding author

Correspondence to Bruno Rossion.

Ethics declarations

Conflict of interest

The authors declare no competing conflict of interest.

Ethics approval

Non applicable (review paper).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossion, B., Lochy, A. Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 227, 599–629 (2022). https://doi.org/10.1007/s00429-021-02370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02370-0

Keywords

Navigation