Skip to main content

Advertisement

Log in

RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 09 October 2009

Abstract

Purpose

To identify the DNA methylation biomarkers for the detection of the stage I non-small cell lung cancer (NSCLC).

Materials and methods

The methylated state of p16INK4A, ESR1, HOX9, RASSF1A, DAPK1, PTEN, ABCB1, MGMT, APC and MT1G genes that have been reported frequently methylated in lung cancer was determined using methylation-specific PCR in four lung cancer cell lines, 124 cancer tissues of the stage I NSCLC and 26 non-cancerous disease tissues.

Result

The RASSF1A (53/124, 42.74%), APC (49/123, 39.52%), ESR1 (37/124, 29.84%), ABCB1 (31/124, 24.19%, MT1G (25/124, 20.16%) and HOXC9 (17/124, 13.71%) genes were more frequently methylated in the lung tissue from the stage I NSCLC than the non-cancerous lesion patients (2/26, 7.69%, P < 0.01; 2/26, 7.69%, P < 0.01; 2/26, 7.69%, P < 0.05; 1/26, 3.85% P < 0.01; 0/26 0%, P value: <0.01; 0/26, 0%, P < 0.05, respectively). p16INK4A was methylated in 28/124 (22.56%) of cancer tissues and 2/26 (7.69%) of non-cancerous tissues (P value >0.05). No significant association between the methylated state of the genes and the smoking, age or the pathologic types (squamous carcinoma, adenoma and the mixed types) was found. However, p16INK4A methylation was more frequently detected in the male (23/80, 28.75%) than the female (5/44, 11.36%, P > 0.05) patients. MGMT was barely methylated: 1/67, 1.49%), while DAPK1 and PTEN were not at all methylated in the cancer groups.

Conclusions

Methylation analysis in tissue of RASSF1A, APC, ESR1, ABCB1 and HOXC9 genes confirmed 79.8% of the existing diagnosis for the stage I NSCLC at specificity: 73.1%. The insufficiency of predicting disease onset in China, using the previously recommended targets (MGMT, DAPK1 and PTEN) in the United States reflects a potential disease disparity between these two populations. Alternatively, methylated state of this set of genes may be more specific to the late rather than the early stage of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

DAPK1:

Death-associated protein kinase 1

p16INK4A:

Cyclin-dependent kinase inhibitor 2A

PTEN:

Phosphatase and tensin homolog

RASSF1A:

RAS association family 1A

ABCB1:

ATP-binding cassette, subfamily B, member 1

MGMT:

O(6)-methylguanine-DNA-methyltransferase

ESR1:

Estrogen receptor alpha

HOXC9:

Homeobox C9

MT1G:

Metallothionein 1G

References

  • Anglim PP, Alonzo TA, Laird-Offringa IA (2008) DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer 7:81. doi:10.1186/1476-4598-7-81

    Article  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159. doi:10.1056/NEJMra072067

    Article  PubMed  CAS  Google Scholar 

  • Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    PubMed  CAS  Google Scholar 

  • Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Gonzalez S, Tarafa G, Sidransky D, Meltzer SJ, Baylin SB, Herman JG (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60:4366–4371

    PubMed  CAS  Google Scholar 

  • Ferrario C, Lavagni P, Gariboldi M, Miranda C, Losa M, Cleris L, Formelli F, Pilotti S, Pierotti MA, Greco A (2008) Metallothionein 1G acts as an oncosuppressor in papillary thyroid carcinoma. Lab Invest 88:474–481. doi:10.1038/labinvest.2008.17

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics 2007. CA Cancer J Clin 57:43–66. doi:10.3322/canjclin.57.1.43

    Article  PubMed  Google Scholar 

  • Liu Y, Lan Q, Siegfried JM, Luketich JD, Keohavong P (2006) Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia 8:46–51. doi:10.1593/neo.05586

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Gao W, Siegfried JM, Weissfeld JL, Luketich JD, Keohavong P (2007) Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers. BMC Cancer 7:74. doi:10.1186/1471-2407-7-74

    Article  PubMed  Google Scholar 

  • Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP (2001) High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61:3877–3881

    PubMed  CAS  Google Scholar 

  • Marsit CJ, Zheng S, Aldape K, Hinds PW, Nelson HH, Wiencke JK, Kelsey KT (2005a) PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum Pathol 36:768–776. doi:10.1016/j.humpath.2005.05.006

    Article  PubMed  CAS  Google Scholar 

  • Marsit CJ, Kim DH, Liu M, Hinds PW, Wiencke JK, Nelson HH, Kelsey KT (2005b) Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence. Int J Cancer 114:219–223. doi:10.1002/ijc.20714

    Article  PubMed  CAS  Google Scholar 

  • Marsit CJ, Houseman EA, Christensen BC, Eddy K, Bueno R, Sugarbaker DJ, Nelson HH, Karagas MR, Kelsey KT (2006) Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors. Cancer Res 66:10621–10629

    Article  PubMed  CAS  Google Scholar 

  • Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594. doi:10.4065/83.5.584

    Article  PubMed  Google Scholar 

  • Nakata S, Sugio K, Uramoto H, Oyama T, Hanagiri T, Morita M, Yasumoto K (2006) The methylation status and protein expression of CDH1, p16 (INK4A), and fragile histidine triad in non-small cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance. Cancer 106:2190–2199. doi:10.1002/cncr.21870

    Article  PubMed  CAS  Google Scholar 

  • Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60:5954–5958

    PubMed  CAS  Google Scholar 

  • Risch A, Plass C (2008) Lung cancer epigenetics and genetics. Int J Cancer 123:1–7. doi:10.1002/ijc.23605

    Article  PubMed  CAS  Google Scholar 

  • Rosas SL, Koch W, da Costa Carvalho MG, Wu L, Califano J, Westra W, Jen J, Sidransky D (2001) Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 61:939–942

    PubMed  CAS  Google Scholar 

  • Sobin LH, Wittekind C (eds) (2002) TNM Classification of malignant tumours, 6th edn. Wiley, New York

    Google Scholar 

  • Song F, He M, Li H, Qian B, Wei Q, Zhang W, Chen K, Hao X (2008) A cancer incidence survey in Tianjin: the third largest city in China-between 1981 and 2000. Cancer Causes Control 19:443–450. doi:10.1007/s10552-007-9105-6

    Article  PubMed  Google Scholar 

  • Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC (eds) (2004) World Health Organization classification of tumours. IARC Press, Lyon

    Google Scholar 

  • Tsou JA, Shen LY, Siegmund KD, Long TI, Laird PW, Seneviratne CK, Koss MN, Pass HI, Hagen JA, Laird-Offringa IA (2005) Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer 47:193–204. doi:10.1016/j.lungcan.2004.08.003

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang D, Zheng W, Luo J, Bai Y, Lu Z (2008) Multiple gene methylation of non-small cell lung cancers evaluated with 3-dimensional microarray. Cancer 112:1325–1336. doi:10.1002/cncr.23312

    Article  PubMed  CAS  Google Scholar 

  • WHO and in Collaboration with UICC and ACS (1984) World Health Organization Guidelines for the conduct of tobacco-smoking surveys among health professionals: WHO meeting. Winnipeg, Canada

  • Yanagawa N, Tamura G, Oizumi H, Takahashi N, Shimazaki Y, Motoyama T (2003) Promoter hypermethylation of tumor suppressor and tumor-related genes in non-small cell lung cancers. Cancer Sci 94:589–592. doi:10.1111/j.1349-7006.2003.tb01487.x

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Ni M, Xu J, Zhang H, Gao B, Gu J, Chen J, Zhang L, Wu M, Zhen S, Zhu J (2002) Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer 2:29. doi:10.1186/1471-2407-2-29

    Article  PubMed  Google Scholar 

  • Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, Gao B, Wang W, Gu L, Meng J, Wang J, Feng X, Li Y, Yao X, Zhu J (2007) A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 13:7296–7304. doi:10.1158/1078-0432.CCR-07-0861

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Yao X (2009) Use of DNA methylation for cancer detection: promises and challenges. Int J Biochem Cell Biol 41:147–154. doi:10.1016/j.biocel.2008.09.003

    Article  PubMed  CAS  Google Scholar 

  • Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD (2001) Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61:249–255

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported to J. Zhu by Shanghai Science Foundation grant: 07JC14074, National Science Foundation grants 30570850 and 90919024, National Research Program for Basic Research of China grants 2004CB518804, 2009CB825606 and 2009CB825607, European 6th program grant LSHB-CT-2005-019067 and supported to J. Yu by National Science Foundation grant: 30872963. Thanks are due to Q. Li for the statistic analysis.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingde Zhu.

Additional information

Q. Lin, J. Geng, K. Ma and J. Yu have contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00432-009-0696-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Q., Geng, J., Ma, K. et al. RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China. J Cancer Res Clin Oncol 135, 1675–1684 (2009). https://doi.org/10.1007/s00432-009-0614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0614-4

Keywords

Navigation