Skip to main content

Advertisement

Log in

Neuronavigation in surgery of intracranial and spinal tumors

  • ORIGINAL PAPER
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose: To demonstrate the new possibilities and advantages of neuronavigation in the surgery of intracranial and spinal tumors, based on patient populations treated in our hospital. Materials and methods: An infrared navigation system with integrated microscope guidance was used for frameless intracranial neuronavigation. The biopsies of intracranial tumors were carried out using a frame-based stereotactic technique. Intracranial navigation was, in part, combined with the use of an intraoperative CT scanner and a three-dimensional ultrasound system for data acquisition, correction of brain shifts, and intraoperative quality control. The navigation was also supported by presurgical brain mapping with magnetic source imaging. Navigation in spinal surgery was exclusively performed using an infrared navigation system in combination with an intraoperative CT scanner. Results: The stereotactic tumor biopsies (n=57) were carried out with an accuracy of 91.4% as compared with the histological diagnosis. The work flow of stereotactic procedures could be increased by using the intraoperative CT scanner. Fifty-seven patients with intracranial tumors were treated with the aid of neuronavigation between July 1997 and December 1999. These patients showed an improvement from 80% to 86% on the Karnofsky index 8 weeks postoperatively. The majority of intracranial cases were primary brain tumors (n=30) and metastases (n=13) in functionally important areas of the brain. In four patients, a significant brain shift was observed during neuronavigation, and could be corrected by an image update using either the intraoperative CT scanner (n=2) or the three-dimensional ultrasound system (n=2). The presurgical brain mapping with magnetoencephalography was shown to be reliable in the sensory cortex (n=25). Eleven patients with a thoracic or lumbar tumor were treated by open surgery or stabilization, using a combination of spinal neuronavigation and the intraoperative CT scanner. Two patients with spinal tumors underwent navigated biopsies. Neither of them showed a reduction in the clinical stage, but the Karnofsky index improved from 63% up to 72% 8 weeks postoperatively. Conclusion: Neuronavigation allows very precise intracranial and spinal surgery. The problem of brain shift during the navigation procedures has been solved by intraoperative image acquisition. The use of neuronavigation was shown to improve the postoperative quality of life of patients suffering from brain and spinal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 23 February 2000 / Accepted: 15 March 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberland, N., Ebmeier, K., Hliscs, R. et al. Neuronavigation in surgery of intracranial and spinal tumors. J Cancer Res Clin Oncol 126, 529–541 (2000). https://doi.org/10.1007/s004320000122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004320000122

Navigation