Skip to main content

Advertisement

Log in

Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes are important vectors of diseases to humans and domestic animals. Chemical control of vectors remains a main resource for the prevention and control of vector-borne diseases. Due to the development of insecticide resistance and risks to human health and the environment of synthetic compounds, the search for alternative pesticides is encouraged. This work assessed the insecticidal activity of essential oils (EOs) from Lippia turbinata and L. polystachya from Argentina on Culex quinquefasciatus mosquitoes. EOs were extracted by hydro-distillation and analyzed with gas–liquid chromatography and mass spectrometry. The insecticidal activity against mosquito larvae, pupae, and adults were evaluated according to World Health Organization protocols. Concentrations ranking from 10 to 160 ppm were assessed at 1, 2, 3, and 24 h posttreatment. The composition of the EO of L. polystachya and L. turbinata were qualitatively similar, with α-thujone and carvone as main constituent; differences were mostly due to the proportion of each component. β-caryophyllene was also an important constituent of the EO of L. turbinata. Both EO were larvicidal at concentrations of 80 ppm or higher, but only L. turbinata was adulticidal. No pupal mortality was detected. The potential of these EOs for vector control is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RP (1969) Identification of essential oils by ion trap mass spectroscopy. Academic, New York

    Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Ansari MA, Mittal PK, Razdan RK, Sreehari U (2005) Larvicidal and mosquito repellent activities of Pine (Pinus longifolia, Family: Pinaceae) oil. J Vect Borne Dis 42:95–99

    CAS  Google Scholar 

  • Bassolé IHN, Guelbeogo WM, Nébié R, Costantini C, Sagnon N, Kabore ZI, Traoré SA (2003) Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso. Parassitologia 45:23–26

    PubMed  Google Scholar 

  • Bowen MF (1992) Terpene-sensitive receptors in female Culex pipiens mosquitoes: electrophysiology and behavior. J Insect Physiol 38:759–764

    Article  CAS  Google Scholar 

  • Brogdon WG, McAllister JC (1998) Insecticide resistance and vector control. Emerg Infect Dis 4:605–613

    Article  PubMed  CAS  Google Scholar 

  • Broussalis AM, Ferraro GE, Martino VS, Pinzón R, Coussio JD, Calle Alvarez J (1999) Argentine plants as potential source of insecticidal compounds. J Ethnopharmacol 67:219–223

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AFU, Melo VMM, Craveiro AA, Machado MIL, Bantim MB, Rabelo EF (2003) Larvicidal activity of the essential oil from Lippia sidoides Cham. against Aedes aegypti L. Mem Inst Oswaldo Cruz 98:569–571

    PubMed  CAS  Google Scholar 

  • Cavalcanti ESB, de Morais SM, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem I Oswaldo Cruz 99:541–544

    CAS  Google Scholar 

  • Choochote W, Chaiyasit D, Kanjanapothi1 D, Rattanachanpichai E, Jitpakdi A, Tuetun B, Pitasawat B (2005) Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae). J Vector Ecol 30:302–309

    PubMed  Google Scholar 

  • Curtis CF, Jana-Kara B, Maxwell CA (2003) Insecticide treated nets: impact on vector populations and relevance of initial intensity of transmission and pyrethroid resistance. J Vect Borne Dis 40:1–9

    CAS  Google Scholar 

  • Diaz LA, Ré V, Almirón W, Farías A, Vazquez A, Sanchez-Seco MP, Aguilar J, Spinsanti L, Konigheim B, Visintín A, García J, Morales MA, Tenorio A, Contigiani M (2006) Genotype III Saint Louis encephalitis virus outbreak, Argentina, 2005. Emerg Infect Dis 12:1752–1754

    PubMed  CAS  Google Scholar 

  • Duke JA (2004) Dr. Duke’s phytochemical and ethnobotanical databases. http://www.ars-grin.gov/duke/ (accessed May 10, 2007)

  • Foster WA, Hancock RG (1994) Nectar-related olfactory and visual attractants for mosquitoes. J Am Mosq Control Assoc 10:288–296

    PubMed  CAS  Google Scholar 

  • Franzios G, Mirotsou M, Hatziapostolou E, Oral J, Scouras ZG, Mavragani-Tsipidou P (1997) Insecticidal and genotoxic activities of mint essential oils. J Agric Food Chem 45:2690–2694

    Article  CAS  Google Scholar 

  • Gerber FJ, Barnard DR, Ward RA (1994) Manual for mosquito rearing and experimental techniques. Am Mosq Control Assoc Bull 5:1–98

    Google Scholar 

  • Gillij YG, Gleiser RM, Zygadlo JA (2007) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol (in press) (DOI 10.1016/j.biortech.2007.04.066)

  • Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33:330–342

    Article  PubMed  Google Scholar 

  • Hollingsworth RG (2005) Limonene, a citrus extract, for control of mealybugs and scale insects. J Econ Entomol 98:772–779

    PubMed  CAS  Google Scholar 

  • Hwang YS, Wu K-H, Kumamoto J, Axelrod H, Mulla MS (1985) Isolation and identification of mosquito repellents in Artemisia vulgaris. J Chem Ecol 11:1297–1306

    Article  CAS  Google Scholar 

  • Jaenson TG, Palsson K, Borg-Karlson AK (2006) Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plant from Sweden and Guinea-Bissau. J Med Entomol 43:113–119

    Article  PubMed  CAS  Google Scholar 

  • Jhumur US, Dötterl S, Jürgens A (2006) Naïve and conditioned responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae) to flower odors. J Med Entomol 43:1164–1170

    Article  PubMed  Google Scholar 

  • Juliani HR, Koroch A, Simon JE, Biurrun FN, Castellano V, Zygadlo JA (2004) Essential oils from Argentinean aromatic plants. Acta Hort (ISHS) 629:491–498

    CAS  Google Scholar 

  • Karmegam N, Sakthivadivel M, Anuradha V, Thilagavathy D (1997) Indigenous-plant extracts as larvicidal agents against Culex quinquefasciatus Say. Bioresource Technol 59:137–140

    Article  CAS  Google Scholar 

  • Macedo M, Consoli RAGB, Grandi TSM, Dos Anjos AMG, de Olivira AB, Mendes NM, Queiroz RO, Zani CL (1997) Screening of Asteraceae (Compostae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 92:565–570

    PubMed  CAS  Google Scholar 

  • Morales MA, Barrandeguy M, Fabbri C, Garcia JB, Vissani A, Trono K, Gutierrez G, Pigretti S, Menchaca H, Garrido N, Taylor N, Fernandez F, Levin S, Enria D (2006) West Nile virus isolation from equines in Argentina, 2006. Emerg Infect Dis 12:1559–1561

    PubMed  CAS  Google Scholar 

  • Oladimeji FA, Orafidiya OO, Ogunniyi TAB, Adewunmi TA (2000) Pediculocidal and scabicidal properties of Lippia multiflora essential oil. J Ethnopharmacol 72:305–311

    Article  PubMed  CAS  Google Scholar 

  • Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A (2004) Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry 65:2797–2802

    Article  PubMed  CAS  Google Scholar 

  • Ratra GS, Karnita SG, Casida JE (2001) Role of human GABAa receptor beta-3 subunit in insecticide toxicity. Toxicol Appl Pharmacol 172:233–240

    Article  PubMed  CAS  Google Scholar 

  • Ruffinengo SA, Eguaras MB, Floris IC, Faverin CD, Bailac PE, Ponzi ME (2005) LD50 and repellent effects of essential oils from Argentinean wild plant species on Varroa destructor. J Econ Entomol 98:651–655

    Article  PubMed  CAS  Google Scholar 

  • Shirley EA (1987) Application of ranking methods to multiple comparison procedures and factorial experiments. Appl Statistics 36:205–213

    Article  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  PubMed  CAS  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    PubMed  CAS  Google Scholar 

  • Tripathi AK, Prajapati V, Ahmad A, Aggarwal KK, Khanuja SPS (2004) Piperitenone oxide as toxic, repellent, and reproduction retardant toward malarial vector Anopheles stephensi (Diptera: Anophelinae). J Med Entomol 41:691–698

    PubMed  CAS  Google Scholar 

  • Vartak PH, Sharma RN (1993) Vapour toxicity & repellence of some essential oils & terpenoids to adults of Aedes aegypti (L) (Diptera: Culicidae). Indian J Med Res 97:122–127

    PubMed  CAS  Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides. Protocols for laboratory and field evaluation of insecticides and repellents. CTD/WHOPES/IC-96.1, Geneva

  • WHO (1999) Expert Committee on Vector Biology and Control Sixteenth report. Geneva, EB108/6

  • WHO (2002) Dengue and dengue hemorrhagic fever. World Health Organization fact sheet No. 117 http://www.who.int/mediacentre/factsheets/fs117/en/index.html

  • WHO (2006) Informal consultation on malaria elimination: setting up the WHO agenda. Editors Delacollette C and Rietveld A. WHO/HTM/MAL/2006.1114

  • Zaim M, Jambulingam P (2004) Global insecticide use for vector-borne disease control. World Health Organization Communicable Disease Control, Prevention and Eradication, WHO Pesticide Evaluation Scheme (WHOPES)

  • Zygadlo JA, Grow NR (1995) Comparative study of the antifungal activity of essential oils from aromatic plants growing wild in the central region of Argentina. Flavour Fragr J 10:113–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank partial funding from Fundación Mundo Sano and are also grateful to F. Biurrun from Universidad Nacional de La Rioja who provided L. turbinata plant material. RMG and JAZ are Career Members of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel M. Gleiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleiser, R.M., Zygadlo, J.A. Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 101, 1349–1354 (2007). https://doi.org/10.1007/s00436-007-0647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0647-z

Keywords

Navigation