Skip to main content
Log in

Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone and methanol extracts of five medicinal plants, Abutilon indicum, Aegle marmelos, Euphorbia thymifolia, Jatropha gossypifolia and Solanum torvum were assayed for their toxicity against the early fourth-instar larvae of Culex quinquefasciatus. The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in petroleum ether extract of A. indicum. In the present study, bioassay-guided fractionation of A. indicum led to the separation and identification of a β-sitosterol as a potential new mosquito larvicidal compound with LC50 value of 11.49, 3.58 and 26.67 ppm against Aedes aegypti L, Anopheles stephensi Liston and C. quinquefasciatus Say (Diptera: Culicidae), respectively. 1H NMR, 13C NMR and mass spectral data confirmed the identification of the active compound. β-sitosterol has been recognized as the active ingredient of many medicinal plant extracts. All the crude extracts when screened for their larvicidal activities indicated toxicity against the larvae of C. quinquefasciatus. This article reports the isolation and identification of the β-sitosterol as well as bioassay data for the crude extracts. There are no reports of β-sitosterol in the genus A. indicum, and their larvicidal activities are being evaluated for the first time. Results of this study show that the petroleum ether extract of A. indicum may be considered as a potent source and β-sitosterol as a new natural mosquito larvicidal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed M, Amin S, Islam M, Takahashi M, Okuyama E, Hossain CF (2000) Analgesic principle from Abutilon indicum. Pharmazie 55:314

    PubMed  CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amonkar SV, Banerji A (1971) Isolation and characterization of larvicidal principle of garlic. Science 174(16):1343–1344

    Article  PubMed  CAS  Google Scholar 

  • Brown JK, Perring TM, Cooper AD, Bedford ID, Markham PG (2000) Genetic analysis of Bemisia (Hemiptera: Aleyrodidae) populations by isoelectric focusing electrophoresis. Biochem Genet 38(1–2):13–25

    Article  PubMed  CAS  Google Scholar 

  • Chaubal R, Pawar PV, Hebbalkar GD, Tungikar VB, Puranik VG, Deshpande VH, Deshpande NR (2005) Larvicidal activity of Acacia nilotica extracts and isolation of d-pinitol—a bioactive carbohydrate. Chem Biodivers 2(5):684–688

    Article  PubMed  CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1992) Glossary of Indian medicinal plants, vol. 2. Council for Scientific and Industrial Research, New Delhi, p 12

    Google Scholar 

  • Coats JR (1994) Risks from natural versus synthetic insecticides. Ann Rev Ent 39:489–515

    Article  CAS  Google Scholar 

  • Deepak M, Handa SS (2000) Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phototherapy Res 14(6):463–465

    Article  CAS  Google Scholar 

  • Dua VK, Pandey AC, Alam ME, Dash AP (2006) Larvicidal activity of Hibiscus abelmoschus Linn. (Malvaceae) against mosquitoes. J Am Mosq Control Assoc 22(1):155–157

    Article  PubMed  Google Scholar 

  • Georghiou GP, Lagunes-tejeda A (1991) The occurrence of resistance to pesticides in Arthropods. FAO, Rome, p 318

    Google Scholar 

  • Green MM, Singer JM, Sutherland DJ, Hibben CR (1991) Larvicidal activity of Tagetes minuta (marigold) toward Aedes aegypti. J Am Mosq Contr Assoc 7:282–286

    CAS  Google Scholar 

  • Hahn CS, French OG, Foley P, Martin EN, Taylor RP (2001) Bispecific monoclonal antibodies mediate binding of dengue virus to erythrocytes in a monkey model of passive viremia. J Immunol 66(2):1057–1065

    Google Scholar 

  • Harve G, Kamath V (2004) Larvicidal activity of plant extracts used alone and in combination with known synthetic larvicidal agents against Aedes aegypti. Indian J Exp Biol 42(12):1216–1219

    PubMed  Google Scholar 

  • Hong L, Jun H, Lizin Z, Renxiang HT, Hu LJ, Zhang LX, Tan RX (1999) Bioactive constituents from Pteris multifida. Planta Medica 65(6):586–587

    Article  Google Scholar 

  • Irungu LW, Mwangi RW (1995) Effects of a biologically active fraction from Melia volkensii on Culex quinquefasciatus. Insect Sci Appl 16:159–162

    Google Scholar 

  • Jang YS, Jeon JH, Lee HS (2005) Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species. J Am Mosq Control Assoc 21(4):400–403

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Steidle M, Lanka J, Müller C, Ruther J (2001) The use of general foraging kairomones in a generalist parasitoid. Oikos 95:78–86

    Article  Google Scholar 

  • Johri RK, Pahwa GS, Sharma SC, Zutshi U (1991) Determination of estrogenic/antiestrogenic potential of antifertility substances using rat uterine peroxidase assay. Contraception 44(5):549–557

    Article  PubMed  CAS  Google Scholar 

  • Katade SR, Pawar PV, Tungikar VB, Tambe AS, Kalal KM, Wakharkar RD, Deshpande NR (2006a) Larvicidal activity of bis(2-ethylhexyl) benzene-1,2-dicarboxylate from Sterculia guttata seeds against two mosquito species. Chem Biodivers 3(1):49–53

    Article  PubMed  CAS  Google Scholar 

  • Katade SR, Pawar PV, Wakharkar RD, Deshpande NR (2006b) Sterculia guttata seeds extractives—an effective mosquito larvicide. Indian J Exp Biol 44(8):662–665

    PubMed  Google Scholar 

  • Kelm MA, Nair MG (1996) Mosquitocidal and topoisomerasel inhibitory compounds from Magnolia salicifolia Maxim (Magnoliaceae) fruits. Phytomedicine 3:190

    Google Scholar 

  • Khan AR, Selman BJ (1996) Microsporidian pathogens of mosquitoes and their potential of control agents. Agri Zool Rev 7:303–335

    Google Scholar 

  • Kim ND, Mehta R, Yu W, Neeman I, Livney T, Amichay A, Poirier D, Nicholls P, Kirby A, Jiang W, Mansel R, Ramachandran C, Rabi T, Kaplan B, Lansky E (2002) Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat 71:203–217

    Article  PubMed  CAS  Google Scholar 

  • Kiprono PC, Kabeia F, Keriko JM, Karanja JN (2000) The in vitro antifungal and anti-bacterial activities of beta-sitosterol from Senecio lyratus (Asteraceae). Z. Naturforsch 55:485–488

    CAS  Google Scholar 

  • Lin CC, Cheng HY, Yang CM, Lin TC (2002) Antioxidant and antiviral activities of Euphorbia thymifolia L. J Biomed Sci 9(6):656–664

    PubMed  CAS  Google Scholar 

  • Maciel MAM, Pinto AC, Arruda AC, Pamplona GSR, Vanderlinde FA, Lapa AJ, Echevarria A, Grynberg NF, Côlus IMS, Farias RAF, Costa AML, Rao VSN (2000) Ethnopharmacology, phytochemistry and pharmacology: a successful combination in the study of Croton cajucara. J Ethnopharmacol 70:41–55

    Article  PubMed  CAS  Google Scholar 

  • Matławska I, Sikorska M (2002) Flavonoid compounds in the flowers of Abutilon indicum (L.) Sweet (Malvaceae). Acta Pol Pharm 59(3):227–229

    PubMed  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2007) Comparative efficacy of Solanum xanthocarpum extracts alone and in combination with a synthetic pyrethroid, cypermethrin, against malaria vector, Anopheles stephensi. Southeast Asian J Trop Med Public Health 38(2):256–260

    PubMed  Google Scholar 

  • Mwangi RW, Mukiama TK (1988) Evaluation of Melia volkensii extract fractions as mosquito larvicides. J Am Mosq Contr Assoc 4:442–447

    CAS  Google Scholar 

  • Nathan SS, Kalaivani K, Sehoon K (2006) Effects of Dysoxylum malabaricum Bedd. (Meliaceae) extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol. 97(16):2077–2083

    Article  CAS  Google Scholar 

  • Omena MCD, Bento ES, De Paula JE, Sant'Ana AE (2006) Larvicidal diterpenes from Pterodon polygalaeflorus. Vector Borne Zoonotic Dis 6:216–222

    Article  PubMed  Google Scholar 

  • Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res 102(1):171–174

    Article  PubMed  Google Scholar 

  • Park IK, Lee SG, Shin SC, Park JD, Ahn YJ (2002) Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. J Agric Food Chem 50:1866–1870

    Article  PubMed  CAS  Google Scholar 

  • Pastorino B, Bessaud M, Grandadam M, Murri S, Tolou HJ, Peyrefitte CN (2005) Development of a TaqMan RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J Virol Methods 124(1–2):65–71

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Song J, Tian G, Xue Q, Ge F, Yang J, Shi Q (1998) Field evaluations of Romanomermis yunanensis (Nematoda: Mermithidae) for control of Culicinae mosquitoes in China. Fundam Appl Nematol 21:227–232

    Google Scholar 

  • Perich MJ, Wells C, Bertsch W, Tredway KE (1995) Isolation of the insecticidal components of Tagetes minuta (Compositae) against mosquito larvae and adults. J Am Mosq Control Assoc 11(3):307–310

    PubMed  CAS  Google Scholar 

  • Pleau MJ, Huesing JE, Head GP, Feir DJ (2002) Development of an artificial diet for the western corn rootworm. Entomol Exp Appl 105:1–11

    Article  Google Scholar 

  • Porchezhian E, Ansari SH (2005) Hepatoprotective activity of Abutilon indicum on experimental liver damage in rats. Phytomedicine 12:62–64

    Article  PubMed  CAS  Google Scholar 

  • Promsiri S, Naksathit A, Kruatrachue M, Tharava U (2006) Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci 13:179–188

    Article  Google Scholar 

  • Pushpalatha E, Muthukrishnan J (1995) Larvicidal activity of a few plant extracts against Culex quinquefasciatus and Anopheles stephensi. Indian J Malariol 32(1):14–23

    PubMed  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    Article  PubMed  CAS  Google Scholar 

  • Rastogi RP, Mehrota BN (1993) Compendium of Indian Medicial plants. Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi, Vol.2& Vol.3 pp.2, 3, 174,185,295, 320

  • Rastogi RP, Mehrotra BN (1995) Compendium of Indian Medicinal Plants. Central Drug Research Institute, Lucknow and Publication and Information Directorate, New Delhi Vol.1 & Vol.4 pp.2, 188,321

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. J Comp Appl Biosci 8:209–213

    CAS  Google Scholar 

  • Reuben R (1987) Feeding and reproduction in mosquitoes. Proc Indian Acad Sci (Anim Sci) 96:275–280

    Article  Google Scholar 

  • Rongsriyam Y, Trongtokit Y, Komalamisra N, Sinchaipanich N, Apiwathnasorn C, Mitrejet A (2006) Formulation of tablets from the crude extract of Rhinacanthus nasutus (Thai local plant) against Aedes aegypti and Culex quinquefasciatus larvae: a preliminary study. Southeast Asian J Trop Med Public Health 7(2):265–271

    Google Scholar 

  • Rubalcava MLM, Bautista BEH, Estrada MJ, Ortega MC, Anaya AL (2007) Pentacyclic triterpenes with selective bioactivity from Sebastiania adenophora Leaves, Euphorbiaceae. J Chem Ecol 33:147–156

    Article  CAS  Google Scholar 

  • Samarasekera JK, Khambay BP, Hemalal KP (2004) A new insecticidal protolimonoid from Aegle marmelos. Nat Prod Res 18(2):117–122

    Article  PubMed  CAS  Google Scholar 

  • Saxena SC, Yadav RS (1983) A new plant extract to suppress the population of yellow fever and dengue vector Aedes aegypti L (Diptera: Culicidae). Curr Sci 52:713–715

    Google Scholar 

  • Sharma M, Saxena RC (1994) Phytotoxicologial evaluation of Tegetes erectes on aquatic stages of Anopheles stephensi. Indian J Malariol 31:21–26

    PubMed  CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2005) Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector. J Environ Biol 26(4):657–660

    PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2006) Phytoextract-induced developmental deformities in malaria vector. Bioresour Technol 97(14):1599–1604

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui BS, Gulzar T, Mahmood A, Begum S, Khan B, Afshan F (2004) New insecticidal amides from petroleum ether extract of dried Piper nigrum L. whole fruits. Chem Pharm Bull (Tokyo) 52:1349–1352

    Article  CAS  Google Scholar 

  • Silva TM, Batista MM, Camara CA, Agra MF (2005) Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Ann Trop Med Parasitol 99(4):419–425

    Article  PubMed  CAS  Google Scholar 

  • Terranella A, Eigiege A, Gontor I, Dagwa P, Damishi S, Miri E, Blackburn B, McFarland D, Zingeser J, Jinadu MY, Richards FO (2006) Urban lymphatic filariasis in central Nigeria. Ann Trop Med Parasitol 100(2):163–172

    Article  PubMed  CAS  Google Scholar 

  • Tonk S, Bartarya R, Maharaj Kumari K, Bhatnagar VP, Srivastava SS (2006) Effective method for extraction of larvicidal component from leaves of Azadirachta indica and Artemisia annua Linn. J Environ Biol 27(1):103–105

    PubMed  Google Scholar 

  • Vahitha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus Say. Bioresour Technol 82(2):203–204

    Article  PubMed  CAS  Google Scholar 

  • Wahab SM, Fiki NM, Mostafa SF, Hassan AEB (1998) Characterization of certain steroid hormones in Punica granatum seeds. Bull Fac Pharm Cairo Univ 36:11–15

    Google Scholar 

  • Wang Y, Deng T, Lin L, Yuanjiang Pan Y, Zheng X (2006) Bioassay-guided isolation of antiatherosclerotic phytochemicals from Artocarpus altilis. Phytother Res 20:1052–1055

    Article  PubMed  CAS  Google Scholar 

  • Wernsdorfer G, Wernsdorfer WH (2003) Malaria at the turn from the 2nd to the 3rd millenium. Wien Klin Wochenschr 115(3):2–9

    PubMed  Google Scholar 

  • WHO (1992) Vector resistance to pesticides. Fifteenth Report of the WHO Expert Committee on Vector Biology and Control. WHO Tech Rep Ser 818:1–62

    Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/96.1: p. 69

  • Wiesman Z, Chapagain BP (2006) Larvicidal activity of saponin containing extracts and fractions of fruit mesocarp of Balanites aegyptiaca. Fitoterapia 77(6):420–424

    Article  PubMed  CAS  Google Scholar 

  • Yadav R, Srivastava VK, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269

    PubMed  Google Scholar 

  • Yoganarasimhan SN (2000) Medicinal Plants of India vol. 2. Cyber Media, Bangalore, p 10

    Google Scholar 

  • Zolotar RM, Bykhovets AI, Sokolov SN, Kovganko NV (2002a) Structure–activity relationship of insecticidal steroids.* III. D4,7-6-ketosteroids. Chem Nat Compd 38(1):66–69

    Article  CAS  Google Scholar 

  • Zolotar RM, Bykhovets AI, Kashkan ZN, Chernov YG, Kovganko NV (2002b) Structure–activity relationship for insecticidal steroids. VI. 5,6-disubstituted b-sitosterols. Chem Nat Compd 38(2):167–170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Abdul Hakeem College Management, Prof. U. Peer, Principal and Dr.Ahmed Najib, HOD of Zoology Department for their help and suggestion. We wish to thank The Principal and HOD of Zoology Department, Loyola College, Chennai for providing necessary facilities for our experimental work. We are thankful to Dr. S. Narasimhan, Associate Director, SPIC Science Foundation, Chennai for his help and encouragement. AR is indebted to University Grants Commission, New Delhi for award of fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul Rahuman, A., Gopalakrishnan, G., Venkatesan, P. et al. Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102, 981–988 (2008). https://doi.org/10.1007/s00436-007-0864-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0864-5

Keywords

Navigation