Skip to main content
Log in

Laboratory determination of efficacy of indigenous plant extracts for parasites control

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study was based on assessments of the antiparasitic activities to determine the efficacies of acetone, chloroform, ethyl acetate, hexane, and methanol dried leaf, flower, and seed extracts of Achyranthes aspera L., Anisomeles malabarica (L.) R. Br., Gloriosa superba L., Psidium guajava L., Ricinus communis L., and Solanum trilobatum L. tested against the larvae of cattle tick Rhipicephalus (Boophilus) microplus (Canestrini 1887) (Acari: Ixodidae), sheep internal parasite Paramphistomum cervi (Zeder 1790) (Digenea: Paramphistomatidae) at 2,000 ppm and fourth instar larvae of Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae) at 1,000 ppm. All plant extracts showed moderate effects after 24 h of exposure; however, the highest parasite mortality was found in the leaf ethyl acetate extract of A. aspera, leaf methanol extract of A. malabarica, flower methanol extract of G. superba, and leaf methanol extract of R. communis against the larvae of R. microplus (LC50 = 265.33, 95.97, 153.73, and 181.49 ppm; LC90 = 1,130.18, 393.88, 1,794.25, and 1,829.94 ppm); leaf acetone and chloroform of A. malabarica, flower acetone extract of G. superba, and leaf chloroform and methanol of R. communis against the adult of P. cervi (LC50 = 108.07, 106.69, 157.61, 69.44, and 168.24 ppm; LC90 = 521.77, 463.94, 747.02, 256.52, and 809.45 ppm); leaf ethyl acetate extract of A. aspera, leaf chloroform extract of A. malabarica, flower methanol of G. superba, and leaf methanol extract of R. communis against the larvae of A. subpictus (LC50 = 48.83, 135.36, 106.77, and 102.71 ppm; LC90 = 225.36, 527.24, 471.90, and 483.04 ppm); and leaf ethyl acetate extract of A. aspera, leaf chloroform extract of A. malabarica, flower methanol extract of G. superba, and leaf methanol extract of R. communis against the larvae of C. tritaeniorhynchus (LC50 = 68.27, 95.98, 59.51, and 93.94 ppm; LC90 = 306.88, 393.83, 278.99, and 413.27 ppm), respectively. These results suggest that the leaf ethyl acetate extract of A. aspera, leaf acetone and chloroform extract of A. malabarica, flower methanol extract of G. superba, and leaf methanol extract of R. communis have the potential to be used as an ideal eco-friendly approach for the control of the R. microplus, P. cervi, A. subpictus, and C. tritaeniorhynchus. Therefore, this study provides the first report on the larvae and adult parasitic activity of crude solvent extracts, indigenous plants consumed by the natives in southern India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Anees AM (2008) Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitol Res 103(6):1451–1453

    Article  PubMed  Google Scholar 

  • Bagavan A, Kamaraj C, Abdul Rahuman A, Elango G, Abduz Zahir A, Pandiyan G (2009) Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitol Res. doi:10.1007/s00436-008-1295-7

  • Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103(1):223–229

    Article  CAS  PubMed  Google Scholar 

  • Behnia M, Haghighi A, Komeylizadeh H, Tabaei SJ, Abadi A (2008) Inhibitory effects of Iranian Thymus vulgaris extracts on in vitro growth of Entamoeba histolytica. Korean J Parasitol 46(3):153–156

    Article  PubMed  Google Scholar 

  • Boray JC (1959) Studies on intestinal amphistomosis in cattle. Aust Vet J 35:282–287

    Article  Google Scholar 

  • Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009) Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol 100(1):452–456

    Article  CAS  PubMed  Google Scholar 

  • Choochote W, Rongsriyam K, Pitasawat B, Jitpakdi A, Rattanachanpichai E, Junkum A, Tuetun B, Chaiwong P (2004) Evaluation of the colchicine-like activity of Gloriosa superba-extracted fractions for mosquito (Diptera: Culicidae) cytogenetic study. J Med Entomol 41(4):672–676

    CAS  PubMed  Google Scholar 

  • Chopra AK, Sharma MK, Upadhyay VP (1991) Effects of ayurvedic anthelmintics on phosphatase activity of Paramphistomum cervi. Indian J Parasitol 43(1):65–69

    Google Scholar 

  • Chowdhury N, Chatterjee SK, Laskar S, Chandra G (2009) Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). J Pest Sci 82:13–18

    Article  Google Scholar 

  • Chungsamarnyart N, Jiyajinda S, Jangsawan W (1991) Larvicidal effect of plant crude extracts on the tropical cattle tick (Boophilus microplus). Kasetsert J 25:80–89

    Google Scholar 

  • Coskun S, Girisgin O, Kürkcüoglu M, Malyer H, Girisgin AO, Kirimer N, Baser KH (2008) Acaricidal efficacy of Origanum onites L. essential oil against Rhipicephalus turanicus (Ixodidae). Parasitol Res 103(2):259–261

    Article  PubMed  Google Scholar 

  • de Sousa LA, Soares SF, Pires HB Jr (2008) Evaluation of efficacy of ripe and unripe fruit oil extracts of Melia azedarach against Rhipicephalus (Boophilus) microplus (Acari: ixodidae). Rev Bras Parasitol Vet 17(1):36–40

    PubMed  Google Scholar 

  • Elango G, Rahuman AA, Bagavan A, Kamaraj C, Zahir AA, Venkatesan C (2009) Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Parasitol Res. doi: 10.1007/s00436-009-1339-7

  • FAO (2004) Food and Agriculture Organization of the United Nations, Module 1. Ticks: acaricide resistance: diagnosis management and prevention. In: Guidelines resistance management and integrated parasite control in ruminants. Rome: FAO Animal Production and Health Division

  • Fernandes FF (2001) Toxicological effects and resistance to pyretroids in Boophilus microplus from Goiás Brasil. Arq Bras Med Vet Zootec 53:548–552

    Google Scholar 

  • Fernandes FF, Freitas EPS (2007) Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 147(1–2):150–154

    Article  Google Scholar 

  • Fernandes FF, Freitas EPS, Costa AC, Silva IG (2005) Larvicidal potential of Sapindus saponaria to control the cattle tick Boophilus microplus. Pesqui Agropecu Bras 40:1243–1245

    Google Scholar 

  • Ghosh A, Chandra G (2006) Biocontrol efficacy of Cestrum diurnum L. (Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Nat Prod Res 20:371–379

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2008) Laboratory evaluation of a phytosteroid compound of mature leaves of day jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and nontarget organisms. Parasitol Res 103:271–277

    Article  PubMed  Google Scholar 

  • Graf JF, Gogolewski R, Leach-Bing N, Sabatini GA, Molento MB, Bordin EL, Arantes GJ (2004) Tick control: an industry point of view. Parasitology 129:S427–S442

    Article  PubMed  Google Scholar 

  • Horak IG (1971) Paramphistomiasis of domestic ruminants. Adv Parasitol 9:33–71

    Article  CAS  PubMed  Google Scholar 

  • Jacobson RL, Schlein Y (1999) Lectins and toxins in the plant diet of Phlebotomus papatasi (Diptera: Psychodidae) can kill Leishmania major promastigotes in the sandfly and in culture. Ann Trop Med Parasitol 93(4):351–356

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-008-1306-8

  • Kamaraj C, Rahuman AA, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 103(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, Utzinger J (2005) Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop 95:40–57

    Article  PubMed  Google Scholar 

  • Kulkarni SM (1983) Detection of sporozoites in Anopheles subpictus in Baster district, Madhya Pradesh. Indian J Malariol 20:159–160

    Google Scholar 

  • Kweka EJ, Mosha F, Lowassa A, Mahande AM, Kitau J, Matowo J, Mahande MJ, Massenga CP, Tenu F, Feston E, Lyatuu EE, Mboya MA, Mndeme R, Chuwa G, Temu EA (2008) Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. Malar J 7:152

    Article  PubMed  Google Scholar 

  • Lima MG, Maia IC, Sousa BD, Morais SM, Freitas SM (2006) Effect of stalk and leaf extracts from Euphorbiaceae species on Aedes aegypti (Diptera, Culicidae) larvae. Rev Inst Med Trop Sao Paulo 48(4):211–214

    PubMed  Google Scholar 

  • Mathew N, Anitha MG, Bala TS, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res. doi:10.1007/s00436-008-1284-x

  • Neto AG, da Silva Filho AA, Costa JM, Vinholis AH, Souza GH, Cunha WR, Silva ML, Albuquerque S, Bastos JK (2004) Evaluation of the trypanocidal and leishmanicidal in vitro activity of the crude hydroalcoholic extract of Pfaffia glomerata (Amarathanceae) roots. Phytomedicine 11(7–8):662–665

    Article  CAS  PubMed  Google Scholar 

  • Noble ER, Noble GA (1982) The biology of animal parasites. Lea & Febiger, Philadelphia, pp 174–175

    Google Scholar 

  • Nok AJ, Williams S, Onyenekwe PC (1996) Allium sativum-induced death of African trypanosomes. Parasitol Res 82(7):634–637

    Article  CAS  PubMed  Google Scholar 

  • Peter RJ, Van den Bossche P, Penzhorn BL, Sharp B (2005) Tick, fly, and mosquito control—lessons from the past, solutions for the future. Vet Parasitol 132:205–215

    Article  CAS  PubMed  Google Scholar 

  • Ponce-Macotela M, Rufino-González Y, González-Maciel A, Reynoso-Robles R, Martínez-Gordillo MN (2006) Oregano (Lippia spp.) kills Giardia intestinalis trophozoites in vitro: antigiardiasic activity and ultrastructural damage. Parasitol Res 98(6):557–560

    Article  PubMed  Google Scholar 

  • Probert AJ, Sharma RK, Singh K, Saxena R (1981) The effect of five fasciolicides on malate dehydrogenase activity and mortality of Fasciola gigantica, Fasciolopsis buski and Paramphistomum explanatum. J Helminthol 55(2):115–122

    CAS  PubMed  Google Scholar 

  • Puyvelde LV, Geysen D, Ayobangira FX, Hakizamungu E, Nshimiyimana A, Kalisa A (1985) Screening of medicinal plants of Rwanda for acaricidal activity. J Ethnopharmacol 13(2):209–215

    Article  PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104:637–643

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71(5):553–555

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103(1):133–139

    Article  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P, Gopalakrishnan G (2008) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol Res 103(6):1383–1390

    Article  PubMed  Google Scholar 

  • Raje AA, Jangde CR, Kolte SW (2003) Evalution of anthelmintic activity of mixture of indigenous medicinal plants in cow calves. J Vet Parasitol 17:97–99

    Google Scholar 

  • Rajkumar S, Jebanesan A (2004) Ovicidal activity of Solanum trilobatum Linn (Solanaceae) leaf extract against Culex quinquefasciatus Say and Culex tritaeniorhynchus Gile (Diptera: Culicidae). Int J Trop Insect Sci 24(4):340–342

    Article  Google Scholar 

  • Rajkumar S, Jebanesan A (2007) Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Trop Biomed 24(2):71–75

    CAS  PubMed  Google Scholar 

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. CABIOS 8:209–213

    CAS  PubMed  Google Scholar 

  • Ribeiro VL, Avancini C, Gonçalves K, Toigo E, von Poser G (2008) Acaricidal activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Vet Parasitol 151(2–4):351–354

    Article  PubMed  Google Scholar 

  • Ribeiro VL, Toigo E, Bordignon SA, Gonçalves K, von Poser G (2007) Acaricidal properties of extracts from the aerial parts of Hypericum polyanthemum on the cattle tick Boophilus microplus. Vet Parasitol 147(1–2):199–203

    Article  PubMed  Google Scholar 

  • Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104(2):237–244

    Article  CAS  PubMed  Google Scholar 

  • Sey O (1982) The morphology, life-cycle and geographical distribution of Paramphistomum cervi (Zeder, 1790) (Trematoda: Paramphistomata). Misc Zool Hung 1:11–24

    Google Scholar 

  • Sharma VP (2003) Malaria and poverty in India. Curr Sci 84(4):513–515

    Google Scholar 

  • Silva WJ, Dória GA, Maia RT, Nunes RS, Carvalho GA, Blank AF, Alves PB, Marçal RM, Cavalcanti SC (2008) Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol 99(8):3251–5

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Dhiman RC, Mittal PK (2007) Studies on mosquito larvicidal properties of Eucalyptus citriodora Hook (family—Myrtaceae). J Commun Dis 39(4):233–236

    CAS  PubMed  Google Scholar 

  • Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351:370–378

    Article  CAS  PubMed  Google Scholar 

  • Tandon V, Pal P, Roy B, Rao HS, Reddy KS (1997) In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India. Parasitol Res 83(5):492–498

    Article  CAS  PubMed  Google Scholar 

  • Thavara U, Tawatsin A, Bhakdeenuan P, Wongsinkongman P, Boonruad T, Bansiddhi J, Chavalittumrong P, Komalamisra N, Siriyasatien P, Mulla MS (2007) Repellent activity of essential oils against cockroaches (Dictyoptera: Blattidae, Blattellidae, and Blaberidae) in Thailand. Southeast Asian J Trop Med Public Health 38(4):663–673

    PubMed  Google Scholar 

  • Upasani SM, Kotkar HM, Mendki PS, Maheshwari VL (2003) Partial characterization and insecticidal properties of Ricinus communis L. foliage flavonoids. Pest Manag Sci 59:1349–1354

    Article  CAS  PubMed  Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides CTD/WHO PES/IC/96.1: p. 69

  • WHO (2005) World malaria report. Geneva, WHO/HTM/MAL/2005:1102

  • Yadav R, Srivastava VK, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Abdul Hakeem College Management; Dr. S. Mohammed Yousuff, Principal; Dr. Ahmed Najib, Reader and HOD of the Zoology Department; and Dr. Sait Sahul Hameed, Reader in Zoology, for their help and suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahir, A.A., Rahuman, A.A., Kamaraj, C. et al. Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 105, 453–461 (2009). https://doi.org/10.1007/s00436-009-1405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1405-1

Keywords

Navigation