Skip to main content

Advertisement

Log in

Malaria vector control: from past to future

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aditya G, Saha GK (2006) Predation of the beetle Rhantus sikkimensis (Coleoptera: Dytiscidae) on the larvae of Chironomus Meigen (Diptera: Chironomidae) of the Darjeeling Himalayas of India. Limnologica 36:251–257

    Google Scholar 

  • Ahmed SM, Zerihun A (2010) Possession and usage of insecticidal bed nets among the people of Uganda: is BRAC Uganda Health Programme pursuing a pro-poor path? PLoS ONE 5(9):e12660. doi:10.1371/journal.pone.0012660

    PubMed  Google Scholar 

  • Allan R, Vestergaard M, Imtiazuddin O (2009) Durable Residual Wall Lining (DL) as a replacement for IRS in malaria vector control. 5th MIM Pan-African malaria conference, 2–6 Nov. 2009, Narobi, Kenya. Poster no. 759, pp. 206

  • Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M (2002) Malaria control with genetically manipulated insect vectors. Science 298:119–121

    PubMed  CAS  Google Scholar 

  • Al-Taiar A, Assabri A, Al-Habori M, Azazy A, Algabri A, Alganadib M, Whitty CJM, Jaffar S (2009) Socioeconomic and environmental factors important for acquiring non-severe malaria in children in Yemen: a case-control study. Trans R Soc Trop Med Hyg 103:72–78

    PubMed  Google Scholar 

  • Al-Tikrity A (1964) The geographical distribution of Anopheles species and vectors of malaria in Iraq. Bull Endem Dis 6:91–117

    CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culucidae). Parasitol Res 99:466–472

    PubMed  Google Scholar 

  • Ansari MA, Razdan RK (1995) Relative efficacy of various oils in repelling mosquitoes. Indian J Malariol 32:104–111

    PubMed  CAS  Google Scholar 

  • Ansari MA, Razdan RK (1996) Operational feasibility of malaria control by burning neem oil in kerosene lamp in Beel Akbarpur village, District Ghaziabad, India. Indian J Malariol 33:81–87

    PubMed  CAS  Google Scholar 

  • Ansari MA, Sharma VP, Razdan RK, Mittal PK (1990) Evaluation of certain mosquito repellents marketed in India. Indian J Malariol 27:57–64

    PubMed  CAS  Google Scholar 

  • Ansari MA, Vasudevan P, Tandon M, Razdan RK (1999) Larvicidal and mosquito repellent action of Peppermint (Mentha piperita) oil. Bioresource Technology 71:267–271

    Google Scholar 

  • Ansari MA, Razdan RK, Sreehari U (2005) Laboratory and field evaluation of Hilmilin against mosquitoes. J Am Mosq Control Assoc 21:432–436

    PubMed  CAS  Google Scholar 

  • Arca B, Lombardo F, de Lara Capurro M, della Torre A, Dimopoulos G, James AA, Coluzzi M (1999) Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 96:1516–1521

    PubMed  CAS  Google Scholar 

  • Arnez AM, Segura L, Schwabe C, Allan R (2009) Evaluation of wall lining and curtains as an option to IRS in Equatorial Guinea. 5th MIM Pan-African malaria conference, 2–6 Nov. 2009, Narobi, Kenya. Poster no. 725, pp 198

  • Atkinson PW, Pinkerton AC, O'Brochta DA (2001) Genetic transformation systems in insects. Ann Rev Entomol 46:317–346

    CAS  Google Scholar 

  • Ault SK (1994) Environmental management: a re-emerging vector control strategy. Am J Trop Med Hyg 50:35–49

    PubMed  CAS  Google Scholar 

  • Baomar A, Mohamed A (2000) Malaria outbreak in a malaria-free region in Oman 1998: unknown impact of civil war in Africa. Public Health 114:480–483

    PubMed  CAS  Google Scholar 

  • Barat LM (2006) Four malaria success stories: how malaria burden was successfully reduced in Brazil, Eritrea, India, and Vietnam. Am J Trop Med Hyg 74:12–16

    PubMed  Google Scholar 

  • Barillas-Mury C, Graf R, Hagedorn HH, Wells MA (1991) cDNA and deduced amino acid sequence of a blood meal-induced trypsin from the mosquito, Aedes aegypti. Insect Biochem 21:825–831

    CAS  Google Scholar 

  • Barnard DR (2000) Repellents and Toxicants for Personal Protection. Global Collaboration for Development of Pesticides for Public Health. WHO/CDS/WHOPES/GCDPP/2000.5

  • Batra CP, Raghavendra K, Adak T, Singh OP, Singh SP, Mittal PK, Malhotra MS, Sharma RS, Zaim M, Subbarao SK (2004) Entomological evaluation of bifenthrin treated mosquito nets against anopheline and culicine mosquitoes in India. Indian J Med Res 121:51–62

    Google Scholar 

  • Batra CP, Mittal PK, Adak T, Ansari MA (2005) Efficacy of IGR compound Starycide 480 SC (Triflumuron) against mosquito larvae in clear and polluted water. J Vect Borne Dis 42:109–116

    CAS  Google Scholar 

  • Batra CP, Mittal PK, Adak T, Subbarao SK (2006) Efficacy of Agnique ® MMF Monomolecular surface film against Anopheles stephensi breeding in urban habitats in India. J Am Mosq Control Assoc 22(3):426–432

    PubMed  CAS  Google Scholar 

  • Beach RF, Ruebush TK, Sexton JD, Bright PL, Hightower AW, Breman JG, Mount DL, Oloo AJ (1993) Effectiveness of permethrin-impregnated bed nets and curtains for malaria control in a holoendemic area of western Kenya. Am J Trop Med Hyg 49:290–300

    PubMed  CAS  Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    PubMed  CAS  Google Scholar 

  • Becker N, Margalit J (1993) Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies. Bacillus thuringiensis, an environmental biopesticide: theory and practice. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) John Wiley and Sons, UK, pp 147–170

  • Beerntsen BT, James AA, Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64:115–137

    PubMed  CAS  Google Scholar 

  • Beier JC (2008) Malaria control in the Highlands of Burundi: an important success story. Am J Trop Med Hyg 79:1–2

    PubMed  Google Scholar 

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19:349–355

    PubMed  Google Scholar 

  • Blaustein L (1998) Influence of the predatory backswimmer, Notonecta maculata on invertebrate community structure. Ecol Entomol 23:246–252

    Google Scholar 

  • Böete C, Koella JC (2003) Evolutionary ideas about genetically manipulated mosquitoes and malaria control. Trends Parasitol 19:32–38

    PubMed  Google Scholar 

  • Bouma MJ, Parvez SD, Nesbit R, Sondorp HE (1996) Rapid decomposition of permethrin in the outer fly of an experimental tent in Pakistan. J Am Mosq Control Assoc 12:125–129

    PubMed  CAS  Google Scholar 

  • Bowman DD (2006) Successful and currently ongoing parasite eradication programs. Vet Parasitol 139(4):293–307

    PubMed  Google Scholar 

  • Breman JG (2001) The ears of the hippopotamus: manifestations, determinants and estimates of the malaria burden. Am J Trop Med Hyg 64:1–11

    PubMed  CAS  Google Scholar 

  • Bronner U, Divis PC, Farnert A, Singh B (2009) Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malar J 8:15

    PubMed  Google Scholar 

  • Bukhari T, Knols BGJ (2009) Efficacy of AquatainTM, a monomolecular surface film, against the malaria vectors Anopheles stephensi and An. gambiae s.s. in the Laboratory. Am J Trop Med Hyg 80(5):758–763

    PubMed  Google Scholar 

  • Carlson J, Suchman E, Buchatsky L (2006) Densoviruses for control and genetic manipulation of mosquitoes. Adv Virus Res 68:361–392

    PubMed  CAS  Google Scholar 

  • Castro MC, Yamagata Y, Mtasiwa D, Tanner M, Utzinger J, Keiser J, Singer BH (2004) Integrated urban malaria control: a case study in dar es salaam, Tanzania. Am J Trop Med Hyg 71:103–117

    Google Scholar 

  • Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405:959–962

    PubMed  CAS  Google Scholar 

  • Catteruccia F, Godfray HCJ, Crisanti A (2003) Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299:1225–1227

    PubMed  CAS  Google Scholar 

  • Catteruccia F, Benton JP, Crisanti A (2005a) An Anopheles transgenic sexing strain for vector control. Nat Biotechnol 23:1414–1417

    PubMed  CAS  Google Scholar 

  • Catteruccia F, Brown A, Petris E, Scali C, Crisanti A (eds) (2005b) Development of a toolkit for manipulating malaria vectors in book Genetically modified mosquitoes for malaria control

  • CDC (2009) Malaria - Vector Control. http://www.cdc.gov/malaria/control_prevention/vector_control.htm. Accessed on: April 21, 2009

  • Charlwood JD, Jolley D (1984) The coil works (against mosquitoes in Papua New Guinea). Trans R Soc Trop Med Hyg 78:678

    PubMed  CAS  Google Scholar 

  • Chatterjee P (2005) Cambodia's fight against malaria. Lancet 366:191–192

    PubMed  Google Scholar 

  • Chavasse DC, Yap HH (eds) (1997) Chemical methods for the control of vectors and pests of public health importance. Document WHO/CTD/WHOPES/97.2. World Health Organization, Geneva

  • Chen B, Harbach RE, Butlin RK (2002) Molecular and morphological studies on the Anopheles minimus group of mosquitoes in southern China: taxonomic review, distribution and malaria vector status. Med Vet Entomol 16:253–265

    PubMed  CAS  Google Scholar 

  • Chen CH, Huang H, Ward CM, Su JT, Schaeffer LV, Guo M, Hay BA (2007a) A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316:597–600

    PubMed  CAS  Google Scholar 

  • Chen X, Marinotti O, Whitman L, Jasinskiene N, James AA (2007b) The Anopheles gambiae vitellogenin gene (VGT2) promoter directs persistent accumulation of a reporter gene product in transgenic Anopheles stephensi following multiple bloodmeals. Am J Trop Med Hyg 76:1118–1124

    PubMed  CAS  Google Scholar 

  • Coene J, Ngimbi NP, Mulumba MP, Wery M (1989) Ineffectiveness of mosquito coils in Kinshasa, Zaire. Trans R Soc Trop Med Hyg 83:568–569

    PubMed  CAS  Google Scholar 

  • Coetzee M, Craig MH, Le Sueur D (2000) Mapping the distribution of members of the Anopheles gambiae complex in Africa and adjacent islands. Parasitol Today 16:74–77

    PubMed  CAS  Google Scholar 

  • Collins FH, Paskewitz SM (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 5:1–9

    PubMed  CAS  Google Scholar 

  • Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, Pakpour N, Ziegler R, Ramberg F, Lewis EE, Brown JM, Luckhart S, Riehle MA (2010) Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog 6(7):e1001003. doi:10.1371/journal.ppat.1001003

    PubMed  Google Scholar 

  • Cooksey KE (1971) The protein crystal toxin of Bacillus thuringiensis: biochemistry and mode of action. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic, New York, London, pp 247–274

    Google Scholar 

  • Curtis CF, Townsont H (1998) Malaria: existing methods of vector control and molecular entomology. Br Med Bull 54:311–325

    PubMed  CAS  Google Scholar 

  • Curtis CF, Kines JD, Ijumba J, Callaghan A, Hill N, Karimzad MA (1989) The relative efficacy of repellents against mosquito vectors of disease. Med Vet Entomol 1:109–119

    Google Scholar 

  • Curtis CF, Lines JD, Baolin B, Renz A (1990) Natural and synthetic repellents. In: Curtis CF (ed) Appropriate technology in vector control. CRC, Boca Raton, pp 75–92

    Google Scholar 

  • Curtis CF, Wilkes TJ, Mbwana H, Chambika C, Aina Y (1994) Comparison of the effectiveness and persistence of mosquito repellency due to quwenling and DEET. Trans R Soc Trop Med Hyg 88:371–372

    Google Scholar 

  • D'Alessandro U, Olaleye BO, McGuire W, Thomson MC, Langerock P, Bennett S, Greenwood BM (1995) A comparison of the efficacy of insecticide-treated and untreated bed nets in preventing malaria in Gambian children. Trans R Soc Trop Med Hyg 89:596–598

    PubMed  Google Scholar 

  • Daniel MI (2006) Quality control of mosquito insecticide treated nets as a preventive measure. J Vect Borne Dis 43:92–93

    Google Scholar 

  • Das PK, Amalraj DD (1997) Biological control of malaria vectors. Indian J Med Res 106:174–197

    PubMed  CAS  Google Scholar 

  • Dash AP, Adak T, Raghavendra K, Singh OP (2007a) The biology and control of malaria vectors in India. Curr Sci 92:1574–1578

    Google Scholar 

  • Dash AP, Raghavendra K, Pillai MKK (2007b) Resurrection of DDT: a critical appraisal. Indian J Med Res 126:1–3

    PubMed  CAS  Google Scholar 

  • DDT. Wikepedia-encyclopedia (2007) Available at: http://en.wikepedia.org/wiki/DDT. (Accessed on March 23, 2007)

  • Djadid ND, Gholizadeh S, Aghajari M, Zehi AH, Raeisi A, Zakeri S (2006) Genetic analysis of rDNAITS2 and RAPD loci in field populations of the malaria vector, Anopheles stephensi (Diptera: Culicidae): implications for the control program in Iran. Acta Trop 97:65–74

    PubMed  CAS  Google Scholar 

  • Dua VK, Pandey AC, Alam ME, Dash AP (2006) Larvicidal activity of Hibiscus abelmoschus Linn. (Malvaceae) against mosquitoes. J Am Mosq Control Assoc 22:155–157

    PubMed  Google Scholar 

  • Dua VK, Pandey AC, Raghavendra K, Gupta A, Sharma T, Dash AP (2009) Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes. Malar J 8:124

    PubMed  Google Scholar 

  • Dulhunty JM, Yohannes K, Kourleoutov C, Manuopangai VT, Polyn MK, Parks WJ, Bryan JH (2000) Malaria control in central Malaita, Solomon Islands 2. Local perceptions of the disease and practices for its treatment and prevention. Acta Trop 75:185–196

    PubMed  CAS  Google Scholar 

  • Durrheim DN, Govere JM (2002) Malaria outbreak control in an African village by community application of “deet” mosquito repellent to ankles and feet. Med Vet Entomol 16:112–115

    PubMed  CAS  Google Scholar 

  • Dusfour I, Harbach RE, Manguin S (2004) Bionomics and systematic of the oriental Anopheles sundaicus complex in relation to malaria transmission and vector control. Am J Trop Med Hyg 71:518–524

    PubMed  Google Scholar 

  • Dysoley L, Kaneko A, Eto H, Mita T, Socheat D, Börkman A, Kobayakawa T (2008) Changing patterns of forest malaria among the mobile adult male population in Chumkiri District, Cambodia. Acta Trop 106:207–212

    PubMed  Google Scholar 

  • Edwards MJ, Lemos FJ, Donnelly-Doman M, Jacobs-Lorena M (1997) Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito Anopheles gambiae. Insect Biochem Mol Biol 27:1063–1072

    PubMed  CAS  Google Scholar 

  • Eisele TP, Lindblade KA, Wannemuehler KA, Gimnig JE, Odhiambo F, Hawley WA, Kuile FOT, Phillips-Howard P, Rosen DH, Nahlen BL, Vulule JM, Slutsker L (2005) Effect of sustained insecticide-treated bed net use on all-cause child mortality in an area of intense perennial malaria transmission in western Kenya. Am J Trop Med Hyg 73:149–156

    PubMed  Google Scholar 

  • Environmental Protection Agency (2008) New pesticide fact sheet. Picaridin. Accessed 7/3/08 http://www.epa.gov/opprd001/factsheets/picaridin.pdf

  • Erhart A, Thang ND, Xa NX, Thieu NQ, Hung LX, Hung NQ, Nam NV, Toi LV, Tung NM, Bien TH, Tuy TQ, Cong LD, Thuan LK, Coosemans M, D'Alessandro U (2007) Accuracy of the health information system on malaria surveillance in Vietnam. Trans R Soc Trop Med Hyg 101:216–225

    PubMed  CAS  Google Scholar 

  • Fast PG (1981) The crystal toxin of Bacillus thuringiensis. In: Burges HD (ed) Microbial control of pests and plant diseases1970–1980. Academic, New York, London, pp 223–248

    Google Scholar 

  • FCCMC (1998) Florida Mosquito Control: the state of the mission as defined by mosquito controllers, regulators and environmental managers. Florida Coordinating Council on Mosquito Control. University of Florida, Gainesville

    Google Scholar 

  • Feles TH, Mills GDJV, FJr D (1968) Evaluation of smoke from insecticidal coils against mosquitoes. Mosquito News 28:547

    Google Scholar 

  • Ferdig MT, Li J, Severson DW, Christensen BM (1996) Mosquito dopa decarboxylase cDNA characterization and blood-meal-induced ovarian expression. Insect Mol Biol 5:119–126

    PubMed  CAS  Google Scholar 

  • Fletcher M, Teklehaimanot A, Yemane G (1992) Control of mosquito larvae in the port city of Assab by an indigenous larvivorous fish Aphanius dispar. Acta Trop 52:155–166

    PubMed  CAS  Google Scholar 

  • Garros C, Van BW, Trung HD, Coosemans M, Manguin S (2006) Review of the Minimus complex of Anopheles, main malaria vector in Southeast Asia: from taxonomic issues to vector control strategies. Trop Med Int Health 11:102–114

    PubMed  CAS  Google Scholar 

  • Gerstl S, Dunkley S, Mukhtar A, Maes P, De Smet M, Baker S, Maikere J (2010) Long-lasting insecticide-treated net usage in eastern Sierra Leone-the success of free distribution. Trop Med Int Hlth 15(4):480–488

    Google Scholar 

  • Gopaul R (1995) Entomological surveillance in Mauritius. Sante 5:401–405

    PubMed  CAS  Google Scholar 

  • Gordeev MI, Ezhov MN, Zvantsov AB, Goriacheva II, Shaikevich EV, Karimov SS, Kadamov DS (2004) Supplement to the list of Anopheles (Diptera, Culicidae) mosquitoes of Tadjikistan and the predominant types of vectors in the current foci of malaria in the republic. Med Parazitol (Mosk) 3:16–21

    Google Scholar 

  • Govella NJ, Okumu FO, Killeen GF (2010) Short report: insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors. Am J Trop Med Hyg 82(3):415–419

    PubMed  CAS  Google Scholar 

  • Graham K, Mohammad N, Rehman H, Nazari A, Ahmad M, Kamal M, Skovmand O, Guillet P, Allan R, Zaim M, Yates A, Lines J, Rowland M (2002) Insecticide treated plastic tarpaulins for control of malaria vectors in refugee camps. Med Vet Entomol 16:404–408

    PubMed  CAS  Google Scholar 

  • Gratz NG (1999) Emerging and resurging vector-borne diseases. Ann Rev Entomol 44:51–75

    CAS  Google Scholar 

  • Gratz NG, Pal R (1988) Malaria vector control: larviciding. Malaria: principle and practices of malariology. In: Wernsdorfer WH, McGregor IA (eds) Churchill Livingstone, UK, pp 1213–1226

  • Green CA, Gass RF, Munstermann LE (1990) Population-genetic evidence for two species in Anopheles minimus in Thailand. Med Vet Entomol 4:25–34

    PubMed  CAS  Google Scholar 

  • Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10:597–604

    PubMed  CAS  Google Scholar 

  • Gupta RK, Rutledge LC (1994) Role of repellents in vector control and disease prevention. Am J Trop Med Hyg 50:82–86

    PubMed  CAS  Google Scholar 

  • Hampton SE (2004) Habitat overlap of enemies: temporal pattern and role of spatial complexity. Oecologia 138:475–484

    PubMed  Google Scholar 

  • Handler AM (2002) Prospects for using genetic transformation for improved SIT and new biocontrol methods. Genetica 116:137–149

    PubMed  CAS  Google Scholar 

  • Haq S, Bhatt RM, Vaishnav KG, Yadav RS (2004) Field evaluation of biolarvicides in Surat city, India. J Vect Borne Dis 41:61–66

    CAS  Google Scholar 

  • Harrison G (1978) Mosquitoes, malaria and man. A history of hostilities since 1880. John Murray

  • Harrison BA, Rattanarithikul R, Peyton EL, Mongkolpanya K (1990) Taxonomic changes, revised occurrence records and notes on the Culicidae of Thailand and neighboring countries. Mosq Syst 22:196–227

    Google Scholar 

  • Hassall KA (1982) The chemistry of pesticides, London, Mac. Millan Press, Insecticide Resistance Action Committee, 2007. Resistance Management for Sustainable Agriculture and Improved Public Health

  • Haworth J (1988) The global distribution of malaria and the present control effort. In: Wernsdorfer W (ed) Malaria: principles and practice of malariology. Churchill Livingstone, Edinburgh, Scotland, pp 1379–1420

    Google Scholar 

  • Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4:327–336

    PubMed  Google Scholar 

  • Horn C, Schmid BGM, Pogoda FS, Wimmer EA (2002) Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32:1221–1235

    PubMed  CAS  Google Scholar 

  • Howard N, Shafi A, Jones C, Rowland M (2010) Malaria control under the Taliban regime: insecticide-treated net purchasing, coverage, and usage among men and women in eastern Afghanistan. Malar J 9:7. doi:10.1186/1475-2875-9-7

    PubMed  Google Scholar 

  • Hoy MA (2003) Transgenic insects for pest management programs: status and prospects. Environ Biosafety Res 2:61–64

    PubMed  Google Scholar 

  • Huber HE, Lüthy P (1981) Bacillus thuringiensis delta-endotoxin: Composition and activation. In: Davidson EW (ed) Pathogenesis of invertebrate microbial diseases. Allanheld-Osmun, Totowa, pp 209–234

    Google Scholar 

  • Huynh CQ, Zieler H (1999) Construction of modular and versatile plasmid vectors for the high-level expression of single or multiple genes in insects and insect cell lines. J Mol Biol 288:13–20

    PubMed  CAS  Google Scholar 

  • Integrated Disease Vector Control Project: A profile (2007) National Institute of Malaria Research. Delhi, India, p 160

    Google Scholar 

  • Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452–455

    PubMed  CAS  Google Scholar 

  • Jackson JF, Linskens HF, Inman RB (2002) Testing for genetic manipulation in plants. Springer, Berlin

    Google Scholar 

  • Jacobs-Lorena M (2003) Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes. J Vec Borne Dis 40:73–77

    CAS  Google Scholar 

  • James AA, Blackmer K, Racioppi JV (1989) A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene 75:73–83

    PubMed  CAS  Google Scholar 

  • Jana-Kara BR, Jihullah WA, Shahi B, Dev V, Curtis CF, Sharma VP (1995) Deltamethrin impregnated bed nets against Anopheles minimus transmitted malaria in Assam, India. J Trop Med Hyg 98:73–83

    PubMed  CAS  Google Scholar 

  • Jennings CD, Phommasack B, Sourignadeth B, Kay BH (1995) Aedes aegypti control in the Lao Peoples Democratic Republic, with reference to copepods. Am J Trop Med Hyg 53:324–330

    PubMed  CAS  Google Scholar 

  • Juhn J, James AA (2006) oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect Mol Biol 15:363–372

    PubMed  CAS  Google Scholar 

  • Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J (2004) A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70:486–498

    PubMed  Google Scholar 

  • Klassen W (2009) Introduction: development of the sterile insect technique for African malaria vectors. Malar J 8 (Suppl 2):I1

    PubMed  Google Scholar 

  • Klinkenberg E, Konradsen F, Herrel N, Mukhtar M, Van Der Hoek W, Amerasinghe FP (2004a) Malaria vectors in the changing environment of the southern Punjab, Pakistan. Trans R Soc Trop Med Hyg 98:442–449

    PubMed  Google Scholar 

  • Klinkenberg E, van der Hoek W, Amerasinghe FP (2004b) A malaria risk analysis in an irrigated area in Sri Lanka. Acta Trop 89:215–225

    PubMed  Google Scholar 

  • Klun JA, Khrimian A, Debboun M (2006) Repellent and deterrent effects of SS220, Picaridin, and Deet suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi. J Med Entomol 43(1):34–39

    PubMed  CAS  Google Scholar 

  • Knight KL, Stone A (1977) A catalog of the mosquitoes of the world, Thomas Say Foundation, volume VI. Washington DC, p 611

  • Knols BGJ, Bossin HC, Mukabana WR, Robinson AS (2007) Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world. Am J Trop Med Hyg 77:232–242

    PubMed  Google Scholar 

  • Kobayashi J, Phompida S, Toma T, Looareensuwan S, Toma H, Miyagi I (2004) The effectiveness of impregnated bed net in malaria control in Laos. Acta Trop 89:299–308

    PubMed  Google Scholar 

  • Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A (2000) Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 97:9144–9149

    PubMed  CAS  Google Scholar 

  • Kolaczinski J, Graham K, Fahim A, Brooker S, Rowland M (2005) Malaria control in Afghanistan: progress and challenges. Lancet 365:1506–1512

    PubMed  Google Scholar 

  • Konradsen F, Matsuno Y, Amerasinghe FP, Amerasinghe PH, Hoek WV (1998) Anopheles culicifacies breeding in Sri Lanka and options for control through water management. Acta Trop 71:131–138

    PubMed  CAS  Google Scholar 

  • Konradsen F, van der Hoek W, Amerasinghe FP, Mutero C, Boelee E (2004) Engineering and malaria control: learning from the past 100 years. Acta Trop 89:99–108

    PubMed  Google Scholar 

  • Kroeger A, Gerhardus A, Kruger G, Mancheno M, Pesse K (1997) The contribution of repellent soap to malaria control. Am J Trop Med Hyg 56:580–584

    PubMed  CAS  Google Scholar 

  • Krezanoski PJ, Comfort AB, Hamer DH (2010) Effect of incentives on insecticide-treated bed net use in sub-Saharan Africa: a cluster randomized trial in Madagascar. Malar J 9:186

    PubMed  Google Scholar 

  • Kumar R (2003) Effects of Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) predation on the population growth patterns of different prey species. J Freshw Ecol 18:384–393

    Google Scholar 

  • Kumar R, Hwang JS (2006) Larvicidal efficiency of aquatic predators: a perspective for mosquito biocontrol. Zool Stud 45:447–466

    Google Scholar 

  • Kumar R, Rao TR (2003) Predation on mosquito (Anopheles stephensi and Culex quinquefasciatus) larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the presence of alternate prey. Int Rev Hydrobiol 88:570–581

    Google Scholar 

  • Kumar A, Sharma VP, Sumodan PK, Thavaselvan D, Kamat RH (1994) Malaria control utilizing Bacillus sphaericus against Anopheles stephensi breeding in construction sites and abandoned overhead tanks with Bacillus thuringiensis var. israelensis. J Am Mosq Control Assoc 11:86–89

    Google Scholar 

  • Lacey LA, Lacey CM (1990) The medicinal importance of riceland mosquitoes and their control using alternatives to chemical insecticides. J Am Mosq Control Assoc 2:1–93

    CAS  Google Scholar 

  • Lambrechts L, Koella JC, Böete C (2008) Can transgenic mosquitoes afford the fitness cost? Trends Parasitol 24:4–7

    PubMed  Google Scholar 

  • Lee HI, Seo BY, Shin EH, Burkett DA, Lee JK, Shin YH (2009) Efficiency evaluation of nozawa-style black light trap for control of anopheline mosquitoes. Korean J Parasitol 47:159–165

    PubMed  Google Scholar 

  • Leopold RA, Hughes KJ, DeVault JD (1996) Using electroporation and a slot cuvette to deliver plasmid DNA to insect embryos. Genet Anal 12:197–200

    PubMed  CAS  Google Scholar 

  • Lin K, Aung S, Lwin S, Min H, Aye NN, Webber R (2000) Promotion of insecticide-treated mosquito nets in Myanmar. Southeast Asian J Trop Med Publ Health 31:444–447

    CAS  Google Scholar 

  • Lindquist DA, Abusowa M, Hall MJ (1992) The New World screwworm fly in Libya: a review of its introduction and eradication. Med Vet Entomol 6:2–8

    PubMed  CAS  Google Scholar 

  • Lindsay SW, Ewald JA, Samung Y, Apiwathnasorn C, Nosten F (1998) Thanaka (Limonia acidissima) and deet (di-methyl benzamide) mixture as a mosquito repellent for use by Karen women. Med Vet Entomol 12:295–301

    PubMed  CAS  Google Scholar 

  • Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GE, Emerson PM (2003) Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health 8:512–517

    PubMed  CAS  Google Scholar 

  • Lines J (1996) Mosquito nets and insecticides for net treatment: a discussion of existing and potential distribution systems in Africa. Trop Med Int Health 1:616–632

    PubMed  CAS  Google Scholar 

  • Lombardo F, Lycett GJ, Lanfrancotti A, Coluzzi M, Arca B (2009) Analysis of apyrase 5′ upstream region validates improved Anopheles gambiae transformation technique. BMC Res Notes 2:24

    PubMed  Google Scholar 

  • Lui WK, Wong MH, Miu YL (1987) Toxic effects of mosquito coil (a mosquito repellent) smoke on rats. I. Properties of the mosquito coil and its smoke. Toxicol Lett 39:223–230

    Google Scholar 

  • Lum JK, Kaneko A, Tanabe K, Takahashi N, Björkman A, Kobayakawa T (2004) Malaria dispersal among islands: human mediated Plasmodium falciparum gene flow in Vanuatu, Melanesia. Acta Trop 90:181–185

    PubMed  Google Scholar 

  • Lum JK, Kaneko A, Taleo G, Amos M, Reiff DM (2007) Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu: inferred malaria dispersal and implications for malaria control. Acta Trop 103:102–107

    PubMed  CAS  Google Scholar 

  • Lundkvist E, Landin J, Jackson M, Svensson C (2003) Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bull Entomol Res 93:219–226

    PubMed  CAS  Google Scholar 

  • Lüthy P, Ebersold HR (1981) The entomocidal toxins of Bacillus thuringiensis. Pharmacol Ther 13:257–283

    PubMed  Google Scholar 

  • Mabaso MLH, Sharp B, Lengeler C (2004) Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Trop Med Int Health 9:846–856

    PubMed  Google Scholar 

  • Maffi M (1962) Triops granarius (Lucas) (Crustacea) as a natural enemy of mosquito larvae. Nature 195:722

    Google Scholar 

  • Majori G, Sabatinelli G, Coluzzi M (1987) Efficacy of permethrin-impregnated curtains for malaria vector control. Med Vet Entomol 1(2):185–192

    PubMed  CAS  Google Scholar 

  • Manouchehri AV, Zaini A, Javadian E, Saebi E (1974) Resistance of Anopheles sacharo6i Favre to DDT in Iran, 1973. Iran J Publ Hlth 4:204–211

    Google Scholar 

  • Masanja H, de Savigny D, Smithson P, Schellenberg J, John T, Mbuya C, Upunda G, Boerma T, Victora C, Smith T, Mshinda H (2008) Child survival gains in Tanzania: analysis of data from demographic and health surveys. Lancet 371:1276–1283

    PubMed  Google Scholar 

  • Massebo F, Tadesse M, Bekele T, Balkew M, Gebre-Michael1 T (2009) Evaluation on larvicidal effects of essential oils of some local plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera, Culicidae) in Ethiopia. Afr J Biotechnol 8(17):4183–4188

  • McCabe ET, Barthel WF, Gertler SI, Hall SA (1954) Insect repellents. III. N, N-diethylamides. J Org Chem 19:493–498

    CAS  Google Scholar 

  • McGready R, Hamilton KA, Simpson JA, Cho T, Luxemburger C, Edwards R, Looareesuwan S, White NJ, Nosten F, Lindsay SW (2001a) Safety of the insect repellent N,N-diethyl-M-toluamide (DEET) in pregnancy. Am J Trop Med Hyg 65:285–289

    PubMed  CAS  Google Scholar 

  • McGready R, Simpson JA, Htway M, White NJ, Nosten F, Lindsay SW (2001b) A double-blind randomised therapeutic trial of insect repellents for the prevention of malaria in pregnancy. Tran R Soc Trop Med Hyg 95:137–138

    CAS  Google Scholar 

  • Mialhe E, Miller LH (1994) Biolistic techniques for transfection of mosquito embryos (Anopheles gambiae). Biotechniques 16:924–931

    PubMed  CAS  Google Scholar 

  • Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (Leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461

    PubMed  CAS  Google Scholar 

  • Mittal PK (2003) Biolarvicides in vector control: challenges and prospects. J Vec Borne Dis 40:20–32

    CAS  Google Scholar 

  • Mittal PK, Razdan RK, Dash AP (2007) Insecticide incorporated plastic sheeting for control of malaria vectors and transmission of disease in temporary shelters in Delhi and Noida, 7th Joint Conference of India Society for Malaria and Other Communicable Diseases and Indian Association of Epidemiologists. Desert Medicine Research Centre, Jodhpur, p 25

  • Mohamed AA (2003) Study of larvivorous fish for malaria vector control in Somalia, 2002. East Mediterr Health J 9:618–626

    PubMed  CAS  Google Scholar 

  • Mohanty SS, Raghavendra K, Mittal PK, Dash AP (2008) Efficacy of culture filtrates of Metarhizium anisopliae against larvae of Anopheles stephensi and Culex quinquefasciatus. J Ind Microbiol Biotechnol 35:1199–1202

    PubMed  CAS  Google Scholar 

  • Moore SJ, Debboun M (2007) In: Debboun M, Frances SP, Strickman D (eds) Insect repellents: principles, methods, and uses. CRC, Boca Raton, pp 3–30

    Google Scholar 

  • Mokany A (2007) Impact of tadpole and mosquito larvae on ephemeral pond structure and processes. Mar Freshwater Res 58:436–444

    Google Scholar 

  • Mulla MS (1995) The future of insect growth regulators in vector control. J Am Mosq Control Assoc 11:269–273

    PubMed  CAS  Google Scholar 

  • Mulla MS, Darwazeh HA (1979) New insect growth regulators against flood and stagnant water mosquitoes effect on non-target organisms. Mosq News 39:746–755

    CAS  Google Scholar 

  • Mulla MS, Darwazeh HA, Ede L, Kennedy B (1985) Laboratory and field evaluation of the IGR fenoxycarb against mosquitoes. J Am Mosq Control Assoc 1:442–448

    PubMed  CAS  Google Scholar 

  • Mulla MS, Darwazeh HA, Kennedy B, Dawson MW (1986) Evaluation of new insect growth regulators against mosquitoes with notes on nontarget organisms. J Am Mosq Control Assoc 2:314–320

    PubMed  CAS  Google Scholar 

  • Muller I, Bockarie M, Alpers M, Smith T (2003) The epidemiology of malaria in Papua New Guinea. Trends Parasitol 19:253–259

    PubMed  Google Scholar 

  • Munga S, Vulule J, Allan R (2009) Evaluation of insecticide treated wall lining materials used in traditional rural African houses. 5th MIM Pan-African malaria conference, 2–6 Nov. 2009, Narobi, Kenya. Poster no. 734, pp 200

  • N'Guessan R, Darriet F, Doannio JM, Chandre F, Carnevale P (2001) Olyset net efficacy against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus after 3 years' field use in C te d'Ivoire. Med Vet Entomol 15:97–104

    PubMed  Google Scholar 

  • Nagpal BN, Srivastava A, Valecha N, Sharma VP (2001) Repellent action of neem cream against An. culicifacies and Cx. quinquefasciatus. Curr Sci 80:1270–1271

    CAS  Google Scholar 

  • Nam VS, Yen NT, Kay BH, Marten GG, Reid JW (1998) Eradication of Aedes aegypti from a village in Vietnam using copepod and community participation. Am J Trop Med Hyg 59:657–660

    Google Scholar 

  • Ngo GL, Truong VC, Tran TH, Pham DN (2008) Multiplex PCR assay for some malaria vector species in the Myzomyia series from Vietnam and Southeast Asia. Int J Infect Dis 12:309

    Google Scholar 

  • Nirmala X, Marinotti O, Sandoval JM, Phin S, Gakhar S, Jasinskiene N, James AA (2006) Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi. Insect Biochem Mol Biol 36:694–700

    PubMed  CAS  Google Scholar 

  • Noor AM, Kirui1 VC, Brooker SJ, Snow RW (2009) The use of insecticide treated nets by age: implications for universal coverage in Africa. BMC Public Health 9:369. doi:10.1186/1471-2458-9-369

  • Norris JR (1971) The protein crystal toxin of Bacillus thuringiensis: biosynthesis and physical structure. In: Burges HD, Mussey NW (eds) Microbial control of insects and mites. Academic, New York, London, pp 229–246

    Google Scholar 

  • Nyarango PM, Gebremeskel T, Mebrahtu G, Mufunda J, Abdulmumini U, Ogbamariam A, Kosia A, Gebremichael A, Gunawardena D, Ghebrat Y, Okbaldet Y (2006) A steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004: the effect of combination of control methods. Malar J 5:33

    PubMed  Google Scholar 

  • Oaks SC, Mitchell VS, Pearson GW, Carpenter CCJ (eds) (1991) Malaria: obstacles and opportunities. National Academy, Washington, D.C

    Google Scholar 

  • Oshaghi MA, Shemshad K, Yaghobi-Ershadi MR, Pedram M, Vatandoost H, Abaie MR, Akbarzadeh K, Mohtarami F (2007) Genetic structure of the malaria vector Anopheles superpictus in Iran using mitochondrial cytochrome oxidase (COI and COII) and morphologic markers: a new species complex? Acta Trop 101:241–248

    PubMed  CAS  Google Scholar 

  • Osmani Z, Anees I, Naidu MB (1972) Insect repellent cream for essential oil. Pest India 6:19–21

    CAS  Google Scholar 

  • Ozer N, Alten B, Caglar SS (2001) Distribution of malaria vectors in Turkey, 1st Balkan conference malaria and mosquito control abstract book, Serres Greece. Preference of Serres Center for mosquito Abatement and Citizens Protection, pp 56–61

  • Pal R, LaChance LE (1974) The operational feasibility of genetic methods for control insects of veterinary of medical and importance. Ann Rev Entomol 19:269–291

    CAS  Google Scholar 

  • Pampana E (1969) A textbook of malaria eradication. Oxford University, London, p 593

    Google Scholar 

  • Pandey V, Agrawal V, Sharma K, Raghavendra K, Dash AP (2005) Micropropagation of a traditional medicinal plant, Akarkara (Spilanthes acemella L.) and its bioefficacy against malaria and filarial vectors Anopheles stephensi Liston and Culex quinquefasciatus. Proceeding of National symposium on plant Biotechnology: New Frontiers (2005). CIMAP, Lucknow, pp 18–27

  • Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filarial vector (Culex quinquefasciatus say). Parasitol Res 102:171–174

    PubMed  Google Scholar 

  • Parrish DW (1959) The mosquitoes of Turkey. Mosquito News 19:246–266

    Google Scholar 

  • Parvez SD, Al-Wahaibi SS (2003) Comparison of three larviciding options for malaria vector control. East Mediterr Health J 9:627–636

    PubMed  CAS  Google Scholar 

  • Pathak N, Mittal PK, Singh OP, Vidyasagar D, Vasudevan P (2000) Larvicidal action of essential oils from plants against the vector mosquitoes Anopheles stephensi (Liston), Culex quinquefasciatus (say) and Aedes aegypti (L). Int Pest Control 46:53–55

    Google Scholar 

  • Pendse GS, Bhide BV, Phalnikar NL (1946) Investigation of new plant larvicides with special reference to Spilanthes acmella. J Malar Inst India 6:321

    PubMed  CAS  Google Scholar 

  • Postiglione M, Tabanli S, Ramsdale CD (1973) The anopheles of Turkey. Riv Parassitol 33:127–159

    Google Scholar 

  • Raghavendra K, Subbarao SK (2002) Chemical insecticides in Malaria vector control in India. ICMR Bull 32:93–99

    Google Scholar 

  • Raghavendra K, Sharma P, Dash AP (2008) Biological control of mosquito populations through frogs: Opportunities & constrains. Indian J Med Res 128:22–25

    PubMed  CAS  Google Scholar 

  • Raghavendra K, Singh SP, Subbarao SK, Dash AP (2009a) Laboratory studies on mosquito larvicidal efficacy of aqueous and hexane extracts of dried fruit of Solanum nigraum Linn. Indian J Med Res 130:74–77

    PubMed  CAS  Google Scholar 

  • Raghavendra K, Niranjan Reddy BP, Dash AP, Das A (2009b) Reanalysis of rDNA-ITS2 region sequences of Anopheles cf. culicifacies ‘Bluchistan’ revealed conspecificity to An. dthali. Curr Sci 97(6):923–925

    CAS  Google Scholar 

  • Ragheb M (2007) Nuclear sterile insect technique. https://netfiles.uiuc.edu/mragheb/www/NPRE%20402%20ME%20405%20Nuclear%20Power%20Engineering/Nuclear%20Sterile%20Insect%20Technique.pdf

  • Read AF, Lynch PA, Thomas MB (2009) How to make evolution-proof insecticides for malaria control. PLoS Biology, www.plosbiology.org 7(4):e1000058

    Google Scholar 

  • Ren X, Hoiczyk E, Rasgon JL (2008) Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog 4:e1000135

    PubMed  Google Scholar 

  • Riehle MA, Srinivasan P, Moreira CK, Lorena MJ (2003) Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J Exp Biol 206:3809–3816

    PubMed  Google Scholar 

  • Robert V, Macintyre K, Keating J, McWilson W, Trappe JP, Duchemin JB, Beier JC (2003) Malaria transmission in urban Sub-Saharan Africa. Am J Trop Med Hyg 68:169–176

    PubMed  Google Scholar 

  • Rowland M (1999) Malaria control: bednets or spraying? Malaria control in the Afahan Refugee campus of western Pakistan. Tran R Soc Trop Med Hyg 93:458–459

    CAS  Google Scholar 

  • Rowland M, Mohammed N, Rehman H, Hewitt S, Mendis C, Ahmad M, Kamal M, Wirtz R (2002) Anopheline vectors and malaria transmission in eastern Afghanistan. Trans R Soc Trop Med Hyg 96:620–626

    PubMed  Google Scholar 

  • Rozendaal JA (1997) Vector control: methods for use by individuals and communities World Health Organization, Geneva

  • Russell TL, Lwetoijera DW, Maliti D, Chipwaza B, Kihonda J, Charlwood JD, Smith TA, Lengeler C, Mwanyangala MA, Nathan R, Knols BGJ, Takken W, Killeen GF (2010) Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J 9:187

    PubMed  Google Scholar 

  • Sampath TRR, Yadav RS, Sharma VP, Adak T (1998) Evaluation of lambdacyhalothrin-impregnated bednets in a malaria endemic area of India. Part 1. Implementation and acceptability of the trial. J Am Mosq Control Assoc 14:431–436

    PubMed  CAS  Google Scholar 

  • Samuelsen H, Toe LP, Baldet T, Skovmand O (2004) Prevention of mosquito nuisance among urban populations in Burkina Faso. Soc Sci Med 59:2361–2371

    PubMed  Google Scholar 

  • Saraf DK, Dixit VK (2002) Spilanthes acmella Murr.: study on its extract spilanthol as larvicidal compound. Asian J Exp Sci 16:9–19

    CAS  Google Scholar 

  • Schaefer GH, Miura T, FFJr D, Stewart RJ, Wilder WH, Juird L (1984) Biological activity of J-2931 against mosquitoes (Diptera: Culicidae) and selected nontarget organisms and assessments of potential environment impact. J Econ Entomol 77:425–429

    PubMed  CAS  Google Scholar 

  • Schofield CJ, White GB (1984) House design and domestic vectors of disease. Trans R Soc Trop Med Hyg 78:285–292

    PubMed  CAS  Google Scholar 

  • Scholte E-J, Takken W, Knols BGJ (2003a) Pathogenecity of six East African entomopathogenic fungi to adult Anopheles gambiae s.s (Diptera: Culicidae) mosquitoes. Proc Exp Appl Entomol NEV Amsterdam 14:25–29

    Google Scholar 

  • Scholte E, Njiru B, Smallegang RC, Takken W, Knols BGJ (2003b) Infection of malaria (Anopheles gambiae s.s) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malar J 2:29

    PubMed  Google Scholar 

  • Scholte E, Knols BGJ, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: a review. J Insect Sci 4:1–19

    Google Scholar 

  • Scholte EJ, Takken W, Knols BGJ (2007) Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102:151–158

    PubMed  Google Scholar 

  • Schreck CE (1977) Techniques for the evaluation of insect repellents: a critical review. Annu Rev Entomol 22:101–119

    PubMed  CAS  Google Scholar 

  • Scott TW, Takken W, Knols BGJ, Christophe B (2002) The ecology of genetically modified mosquitoes. Science 298:117–119

    PubMed  CAS  Google Scholar 

  • SEARO (2009) Success Stories in Malaria Control from the SEA Region, http://www.searo.who.int/EN/Section10/Section21/Section340_4263.htm accessed on 29th Dec. 2009

  • Service MW (2008) Medical entomology for students. Cambridge University Press, Cambridge, p 289

    Google Scholar 

  • Severini C, Menegon M, Di Luca M, Abdullaev I, Majori G, Razakov SA, Gradoni L (2004) Risk of Plasmodium vivax malaria reintroduction in Uzbekistan: genetic characterization of parasites and status of potential malaria vectors in the Surkhandarya region. Trans R Soc Trop Med Hyg 98:585–592

    PubMed  CAS  Google Scholar 

  • Sharma VP, Ansari MA (1994) Personal protection from mosquitoes (Diptera: Culicidae) by burning neem oil in kerosene. J Med Entomol 31:505–507

    PubMed  CAS  Google Scholar 

  • Sharma VP, Yadav RS (1995) Cyfluthrin impregnated mosquito nets to control malaria in the mining settlement of Orissa, India. Public Health 12:9–17

    Google Scholar 

  • Sharma VP, Ansari MA, Razdan RK (1993a) Mosquito repellent action of neem (Azadirachta indica) oil. J Am Mosq Control Assoc 9:359–360

    PubMed  CAS  Google Scholar 

  • Sharma VP, Nagpal BN, Srivastava A (1993b) Effectiveness of neem oil mats in repelling mosquitoes. Trans R Soc Trop Med Hyg 87:626

    PubMed  CAS  Google Scholar 

  • Sharma RS, Sharma GK, Dhillon GPS (1996) Planning of malaria control operations. In: Epidemiology and and control of malaria in India. National malaria eradication programme, Directorate General of Health Services, New Delhi, p 251

  • Sharma SK, Upadhyay AK, Haque MA, Padhan K, Tyagi PK, Batra CP, Adak T, Dash AP, Subbarao SK (2005) Village-scale evaluation of mosquito nets treated with a tablet formulation of deltamethrin against malaria vectors. Med Vet Entomol 19:286–292

    PubMed  CAS  Google Scholar 

  • Sharma SK, Tyagi PK, Padhan K, Upadhyay AK, Mohanty HMA, SS RK, Dash AP (2006a) Epidemiology of malaria transmission in forest and plain ecotype villages in Sundargarh District, Orissa, India. Trans R Soc Trop Med Hyg 100:917–925

    PubMed  Google Scholar 

  • Sharma SK, Upadhyay AK, Haque MA, Padhan K, Tyagi PK, Batra CP, Adak T, Dash AP, Subbarao SK (2006b) Effectiveness of mosquito nets treated with a tablet formulation of deltamethrin for malaria control in a hyperendemic tribal area of Sundargarh district, Orissa, India. J Am Mosq Control Assoc 22(1):111–118

    PubMed  CAS  Google Scholar 

  • Sharma SK, Tyagi PK, Upadhyay AK, Haque MA, Adak T, Dash AP (2008) Building small dams can decrease malaria: a comparative study from Sundargarh District, Orissa, India. Acta Trop 107:174–178

    PubMed  Google Scholar 

  • Sharma SK, Upadhyay AK, Haque MA, Tyagi PK, Mohanty SS, Raghavendra K, Dash AP (2009) Field evaluation of Olyset nets: a long-lasting insecticidal net against malaria vectors Anopheles culicifacies and Anopheles fluviatilis in a hyperendemic tribal area of Orissa, India. J Med Entomol 46(2):342–350

    PubMed  CAS  Google Scholar 

  • Sharpe RG, Harbach RE, Butlin RK (2000) Molecular variation and phylogeny of members of the minimus group of Anopheles subgenus Cellia (Diptera: Culicidae). Syst Entomol 25:263–272

    Google Scholar 

  • Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273:17665–17670

    PubMed  CAS  Google Scholar 

  • Shiff C (2002) Integrated approach to malaria control. Clin Microbiol Rev 15:278–293

    PubMed  Google Scholar 

  • Shin SW, Kokoza VA, Raikhel AS (2003) Transgenesis and reverse genetics of mosquito innate immunity. J Exp Biol 206:3835–3843

    PubMed  CAS  Google Scholar 

  • Shirayama Y, Phompida S, Kuroiwa C (2008) Monitoring malaria control in Khammouane province, Laos: an active case detection survey of Plasmodium falciparum malaria using the Paracheck rapid diagnostic test. Trans R Soc Trop Med Hyg 102:743–750

    PubMed  Google Scholar 

  • Simsek FM (2006) Seasonal frequency and relative density of larval populations of mosquito species (Diptera: Culicidae) in Sanliurafa Province, Turkey. Turk J Zool 30:383–392

    Google Scholar 

  • Singer B, Teklehaimanot A, Spielman A, Schapira A, Tozan Y (2005) Coming to grips with Malaria in the New Millennium. Earthscan, U.K

    Google Scholar 

  • Singh KV, Bansal SK (2003) Larvicidal potential of a perennial herb Solanum xanthocarpum against vectors of malaria and dengue/DHF. Curr Sci 84:749

    Google Scholar 

  • Singh N, Mishra AK, Singh OP, Jaiswal A, Khan MT (1994) Feasibility study of insecticide-impregnated bednets for malaria control in forested villages of district Mandla (M.P.). Indian J Malariol 31:136–140

    PubMed  CAS  Google Scholar 

  • Singh N, Shukla MM, Mishra AK, Singh MP, Paliwal JC, Dash AP (2006) Malaria control using indoor residual spraying and larvivorous fish: a case study in Betul, central India. Trop Med Inter Health 11:1512–1520

    Google Scholar 

  • Smartt CT, Chiles J, Lowenberger C, Christensen BM (1998) Biochemical analysis of a blood meal-induced Aedes aegypti glutamine synthetase gene (Amsterdam). Insect Biochem Mol Biol 28:935–945

    PubMed  CAS  Google Scholar 

  • Smedley DP, Ellar DJ (1996) Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology 142:1617–1624

    PubMed  CAS  Google Scholar 

  • Soe-Soe Khin-Saw-Aye, Htay-Aung N-W, Tin-Aung T-S, Roussilhon C, Perignon JL, Druilhe P (2001) Premunition against Plasmodium falciparum in a malaria hyperendemic village in Myanmar. Trans R Soc Trop Med Hyg 95:81–84

    PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Methods Enzymol 207:225–265

    PubMed  CAS  Google Scholar 

  • Sreehari U, Raghavendra K, Rizvi MMA, Dash AP (2009) Wash resistance and efficacy of three long-lasting insecticidal nets assessed from bioassays on Anopheles culicifacies and Anopheles stephensi. Trop Med Int Health 14:597–602

    PubMed  CAS  Google Scholar 

  • Stich AH, Maxwell CA, Haji A, Daudi MH, Machano AY, Mussa JK, Metteelli A, Haji H, Curtis CF (1994) Insecticide-impregnated bed nets reduce malaria transmission in rural Zanzibar. Trans R Soc Trop Med Hyg 88:150–154

    PubMed  CAS  Google Scholar 

  • Stiles-Ocran JB, Knowles SP, Wilson MD, Boakye DA, Jhomas J (2009) Field evaluation of Durable Residual Wall Lining (DL) as an alternative to Indoor Residual Spraying (IRS) for the control Anopheles gambiae in Rural villages of Obuasi, Ghana. 5th MIM Pan-African malaria conference, 2–6 Nov. 2009, Narobi, Kenya. Poster no. 653, pp 178

  • Sujatha CH, Vasuki V, Mariappan T, Kalyanasundaram M, Das PK (1988) Evaluation of plant extracts for biological activity against mosquitoes. Int Pest Control 30:122–124

    Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    PubMed  CAS  Google Scholar 

  • Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC, Knols BGJ (2004) Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24:260–265

    Google Scholar 

  • Takken B, Knols BGJ (2009) Malaria vector control: current and future strategies. Trends Parasitol 25:101–104

    PubMed  Google Scholar 

  • Takken W, Scott TW (eds) (2003) Ecological aspects for application of genetically modified mosquitoes. Kluwer, Netherlands

    Google Scholar 

  • Takken W, Snellen WB, Verhave JP (1990) Environmental measures for malaria control in Indonesia. An historical review on species sanitation. Wageningen Agric Pap 90:1–167

    Google Scholar 

  • Teklehaimanot A, Sachs JD, Curtis C (2007) Malaria control needs mass distribution of insecticidal bednets. Lancet 369:2143–2146

    PubMed  Google Scholar 

  • Temel T (2004) Malaria from the gap: need for cross-sector co-operation in Azerbaijan. Acta Trop 89:249–259

    PubMed  Google Scholar 

  • Terenius O, Juhn J, James AA (2007) Injection of An. stephensi embryos to generate malaria-resistant mosquitoes. J Vis Exp. doi:10.3791/216

    PubMed  Google Scholar 

  • Thomas TG, Sharma SK, Jalees S, Rahman SJ (1994) Insecticidal properties of an indigenous plant. Yucca aloifolia Linn. Against mosquito larvae. J Basic Appl Biomed 2:53–55

    Google Scholar 

  • Thomas JL, Bardou J, L'Hoste S, Mauchamp B, Chavancy G (2001) A helium burst biolistic device adapted to penetrate fragile insect tissues. J Insect Sci 1:9

    PubMed  CAS  Google Scholar 

  • Thomas TG, Raghavendra K, Lal S, Saxena VK (2004) Mosquito larvicidal properties of latex from unripe fruits of Carica papaya Linn. (Caricaceae). J Commun Dis 36:290–292

    PubMed  CAS  Google Scholar 

  • Torres EP, Salazar NP, Belizario VY, Saul A (1997) Vector abundance and behaviour in an area of low malaria endemicity in Bataan, the Philippines. Acta Trop 63:209–220

    PubMed  CAS  Google Scholar 

  • Torres-Estrada JL, Meza-Álvarez RA, Cruz-Lopez L, Rodriguez MH, Arredondo-Jimenez JI (2007) Attraction of gravid anopheles Pseudopunctipennis females to oviposition substrates by Spirogyra majuscula (ZYGNEMATALES: ZYGNMATACEAE) algae under laboratory conditions. J Am Mosq Control Assoc 23:18–23

    PubMed  Google Scholar 

  • Trigg PI, Kondrachine AV (1998) Commentary: malaria control in the 1990s. Bull World Health Organ 76:11–16

    PubMed  CAS  Google Scholar 

  • Uma Devi R, Lakshmi D, Aarthi N (2010) Toxicity effect of Artemisia parviflora against malarial vector Anopheles stephensi Liston. J Biopesticides 3(1 Special Issue):195–198

    CAS  Google Scholar 

  • Utarini A, Winkvist A, Ulfa FM (2003) Rapid assessment procedures of malaria in low endemic countries: community perceptions in Jepara district, Indonesia. Soc Sci Med 56:701–712

    PubMed  Google Scholar 

  • Van Bortel W, Trung HD, Manh ND, Roelants P, Verlé P, Coosemans M (1999) Identification of two species within the Anopheles minimus complex in northern Vietnam and their behavioural divergences. Trop Med Int Health 4:257–265

    PubMed  Google Scholar 

  • Van Bortel W, Harbach RE, Trung HD, Roelants P, Backeljau T, Coosemans M (2001) Confirmation of Anopheles varuna in Vietnam, previously misidentified and mis targeted as the malaria vector Anopheles minimus. Am J Trop Med Hyg 65:729–732

    PubMed  Google Scholar 

  • Van Bortel W, Trung HD, Thuan LK, Sochantha T, Socheat D, Sumrandee C, Baimai V, Keokenchanh K, Samlane P, Roelants P, Denis L, Verhaeghen K, Obsomer V, Coosemans M (2008) The insecticide resistance status of malaria vectors in the Mekong region. Malar J 7:102

    PubMed  Google Scholar 

  • Van Huesden MC, Thompson F, Dennis J (1998) Biosynthesis of Aedes aegypti lipophorin and gene expression of its apolipoproteins. Insect Biochem Mol Biol 28:733–738

    Google Scholar 

  • Vasudevan P, Kashyap S, Sharma S (1997) Tagetes: a multipurpose plant. Bioresource Technol 62:29–35

    CAS  Google Scholar 

  • Vittal M, Limaye LS (1984) Field village scale trial of use of repellent in malaria control. Indian J Med Sci 38:201–203

    PubMed  CAS  Google Scholar 

  • Vythilingam I, Chan ST, Shanmugratnam C, Tanrangm H, Chooim KH (2005) The impact of development and malaria control activities on its vectors in the Kinabatangan area of Sabah, East Malaysia. Acta Trop 96:24–30

    PubMed  CAS  Google Scholar 

  • Wakabi W (2007) Africa counts greater successes against malaria. Lancet 370:1895–1896

    PubMed  Google Scholar 

  • Walker K, Lynch M (2007) Contributions of Anopheles larval control to malaria suppression in tropical Africa: review on achievements and potential. Med Vet Entomol 21:2–21

    PubMed  CAS  Google Scholar 

  • Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, Butlin RK (1999) Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. Med Vet Entomol 13:24–32

    PubMed  CAS  Google Scholar 

  • WHO (1982) Manual on environmental management for mosquito control with special emphasis on malaria vectors. WHO Offset Publication. 66, Geneva

  • WHO (1993) World Health Organization: Implementation of the global malaria control strategy. Geneva. (Technical Report Series 839)

  • WHO (1995) Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group. World Health Organ Tech Rep Ser 857:1–91

    Google Scholar 

  • WHO (2004) Global Strategic Framework for Integrated Vector Management. Document WHO/CDS/CPE/PVC/2004. 10. World Health Organization, Geneva

  • WHO (2005) Regional strategic framework for scaling up the use of insecticide-treated nets http://www.searo.who.int/LinkFiles/Reports_MAL-239_&_VBC-87.pdf.

  • WHO (2006a) WHO gives indoor use of DDT a clean bill of health for controlling malaria. Available at http://www.who.int/mediacentre/news/releases/2006/pr50/en/print.html. (Accessed on September 20, 2006)

  • WHO (2006b) Indoor residual spraying, use of indoor residual spraying for scaling up global malaria control and elimination. WHO/HTM/MAL/2006.1112

  • WHO (2006c) World Health Organization: Global Malaria Programme, Geneva, p.13

  • WHO (2007a) Anopheline species complexes in South and South-East Asia, Regional office for South East Asia, New Delhi, 57, pp 22–32

  • WHO (2007b) Malaria, mosquitoes and the legacy of Ronald Ross. Bull World Health Organ 85:894–896

    Google Scholar 

  • WHO (2008) World Malaria Report, Disease Burden in SEA Region. Regional office for South East Asia. New Delhi

  • Wikipedia (2009) Anopheles http://en.wikipedia.org/wiki/Anopheles. Accessed on: April 10, 2009

  • Wyss JH (2000) Screwworm eradication in the Americas. Ann NY Acad Sci 916:186–193

    PubMed  CAS  Google Scholar 

  • Yap HH (1985) Biological control of mosquitoes, especially malaria vectors, Anopheles species. Southeast Asian J Trop Med Public Health 16:163–172

    PubMed  CAS  Google Scholar 

  • Yapabandara AMGM, Curtis CF (2004) Control of vectors and incidence of malaria in an irrigated settlement scheme in Sri Lanka by using the insect growth regulator pyriproxyfen. J Am Mosq Control Assoc 20:395–400

    PubMed  CAS  Google Scholar 

  • Yohannes K, Dulhunty JM, Kourleoutov C, Manuopangai VT, Polyn MK, Parks WJ, Williams GM, Bryan JH (2000) Malaria control in central Malaita, Solomon Islands: 1. The use of insecticide-impregnated bed nets. Acta Trop 75:173–183

    PubMed  CAS  Google Scholar 

  • Zahar AR (1974) Review of the ecology of malaria vectors in the WHO Eastern Mediterranean Region. Bull World Health Organ 50:427–440

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaraju Raghavendra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavendra, K., Barik, T.K., Reddy, B.P.N. et al. Malaria vector control: from past to future. Parasitol Res 108, 757–779 (2011). https://doi.org/10.1007/s00436-010-2232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2232-0

Keywords

Navigation