Skip to main content

Advertisement

Log in

Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The purpose of the present study was based on assessments of the antiparasitic activities of synthesized titanium dioxide nanoparticles (TiO2 NPs) utilizing leaf aqueous extract of Catharanthus roseus against the adults of hematophagous fly, Hippobosca maculata Leach (Diptera: Hippoboscidae), and sheep-biting louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). The synthesized TiO2 NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The formation of the TiO2 NPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of titanium particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.43°, 36.03°, and 54.32°. The FTIR spectra of TiO2 NPs exhibited prominent peaks at 714 (Ti–O–O bond), 1,076 (C–N stretch aliphatic amines), 1,172 (C–O stretching vibrations in alcoholic groups), 1,642 (N–H bend bond), and 3,426 (O–H stretching due to alcoholic group). SEM analysis of the synthesized TiO2 NPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25–110 nm. By Bragg’s law and Scherrer’s constant, it is proved that the mean size of synthesized TiO2 NPs was 65 nm. The AFM obviously depicts the formation of the rutile and anatase forms in the TiO2 NPs and also, the surface morphology of the particles is uneven due to the presence of some of the aggregates and individual particles. Adulticidal parasitic activity was observed in varying concentrations of aqueous leaf extract of C. roseus, TiO2 solution, and synthesized TiO2 NPs for 24 h. The maximum parasitic activity was observed in aqueous crude leaf extracts of C. roseus against the adults of H. maculata and B. ovis with LD50 values of 36.17 and 30.35 mg/L, and r 2 values of 0.948 and 0.908, respectively. The highest efficacy was reported in 5 mM TiO2 solution against H. maculata and B. ovis (LD50 = 33.40 and 34.74 mg/L; r 2 = 0.786 and 0.873), respectively, and the maximum activity was observed in the synthesized TiO2 NPs against H. maculata and B. ovis with LD50 values of LD50 = 7.09 and 6.56 mg/L, and r 2 values of 0.880 and 0.913, respectively. This method is considered as an innovative alternative approach to control the hematophagous fly and sheep-biting louse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Abdel-Shafy S, Zayed AA (2002) In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae). Vet Parasitol 106:89–96

    Article  PubMed  CAS  Google Scholar 

  • Al-Rajhy DH, Alahmed AM, Hussein HI, Kheir SM (2003) Acaricidal effects of cardiac glycosides, azadirachtin and neem oil against the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Pest Manag Sci 59(11):1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Anjali CH, SudheerKhan S, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  PubMed  CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–396

    Article  PubMed  CAS  Google Scholar 

  • Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of acari. Biocontrol Sci Tech 10:357–384

    Article  Google Scholar 

  • El-Sayed A, Cordell GA (1981) Catharanthamine, a new antitumor bisindole alkaloid from C. roseus. J Nat Prod 44:289–293

    Article  PubMed  CAS  Google Scholar 

  • FAO (2004) Resistance management and integrated parasite control in ruminants—guidelines, module 1—Ticks: acaricide resistance: diagnosis, management and prevention. Food and Agriculture Organization, Animal Production and Health Division, Rome, p 53

    Google Scholar 

  • Fischhof PK, Moslinger-Gehmayr R, Herrmann WM, Friedmann A, Russmann DL (1996) Theraupetic efficacy of vincamine in dementia. Neuropsychobiology 34:29–35

    Article  PubMed  CAS  Google Scholar 

  • Foil LD, Coleman P, Eisler M, Fragoso-Sanchez H, Garcia-Vazquez Z, Guerrero FD, Jonsson N, Langstaff IG, Li AY, Machila N, Miller RJ, Morton J, Pruett JH, Torr S (2004) Factors that influence the prevalence of acaricide resistance and tick-borne diseases. Vet Parasitol 125:163–181

    Article  PubMed  CAS  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, Hoboken

    Google Scholar 

  • Handy RD, Kammer FV, Lead JR, Hassello M, Owen R, Crane M (2008) The toxicology and chemistry of the manufactured NPs. Ecotoxicology 17:287–314

    Article  PubMed  CAS  Google Scholar 

  • Hanna REB, Williamson DS, Mattison RG, Nizami WA (1988) Seasonal reproduction in Paramphistomum epiclitum and Gastrothylax crumenifer, rumen paramphistomes of the Indian water buffalo, and comparison with the biliary paramphistome Gigantocotyle explanatum. Int J Parasitol 18:513–521

    Article  PubMed  CAS  Google Scholar 

  • Heath ACG, Lampkin N, Jowett JH (1995) Evaluation of non-conventional treatments for control of the biting louse (Bovicola ovis) on sheep. Med Vet Entomol 4:407–412

    Article  Google Scholar 

  • Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: software for scanning probe microscopy and a tool for nanotechnology. Re Sci Instrum 78:013705, http://orgchem.colorado.edu/hndbksupport/specttutor/irchart.html

    Article  CAS  Google Scholar 

  • Iori A, Grazioli D, Gentile E, Marano G, Salvatore G (2005) Acaricidal properties of the essential oil of Melaleuca alternifolia Cheel (tea tree oil) against nymphs of Ixodes ricinus. Vet Parasitol 129:173–176

    Article  PubMed  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011a) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant. Tinospora cordifolia Miers. Parasitol Res. doi:10.1007/s00436-010-2242-y

  • Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2011b) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 11:2473–2476

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B Biointerfaces 71(2):226–229

    Google Scholar 

  • Khandelwal N, Abhijeet S, Devendra J, Upadhyay MK, Verma HN (2010) Green synthesis of silver nanoparticles using Argimone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomat Biostruct 5:483–489

    Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109:461–72

    Article  PubMed  Google Scholar 

  • Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R (2008) Effect of surfactant and polymers on stability and antibacterial activity of silver nanoparticles(NPs). J Phys Chem 112:5825–5834

    CAS  Google Scholar 

  • Levot GW (1995) Resistance and the control of sheep ectoparasitic. Int J Parasitol 25(11):1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Hong L, Guo B (2005) Physicochemical and electrochemical characterization of anatase titanium dioxide NPs. J Power Sour 143:231–235

    Article  CAS  Google Scholar 

  • Mahapatraa O, Bhagatb M, Gopalakrishnana C, Arunachalamb KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3(3):185–193

    Article  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 10:2212–2224

    Google Scholar 

  • Moretti MDL, Sanna-Passino G, Demontis S, Bazzoni E (2002) Essential oil formulations useful as a new tool for insect pest control. AAPS Pharm Sci Tech 13:1–11

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L (2008) Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87(2):127–137

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl(4)(−) ions by the fungus. Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40(19):3585–3588

    Article  PubMed  CAS  Google Scholar 

  • Nayak S (2006) Influence of ethanol extract of Vinca rosea on wound healing in diabetic rats online. J Biol Sci 6(2):51–55

    Google Scholar 

  • Novello FC, Sprague JM (1957) Alkaloids of Vinca rosea Linn. J Am Chem Sot 79:20–28

    Article  Google Scholar 

  • Nyamador WS, Ketoh GK, Amevoin K, Nuto Y, Koumaglo HK, Glitho IA (2010) Variation in the susceptibility of two Callosobruchus species to essential oils. J Stored Prod Res 46:48–51

    Article  CAS  Google Scholar 

  • Parashar BD, Gupta GP, Rao KM (1991) Control of the haematophagous fly H. maculata a serious pest of equines by deltamethrin. Med Vet Entomol 5:363–367

    Article  PubMed  CAS  Google Scholar 

  • Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R (2009) Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J Hazard Mater 165:506–510

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against R (B) microplus. Res Vet Sci. doi:10.1016

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S (2011) Copper nanoparticles synthesized by polyols process used to control hematophagous parasites. Parasitol Res. doi:10.1007/s00436-011-2387-3

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. CABIOS 8:209–213

    PubMed  CAS  Google Scholar 

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two micro algae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 10:10–16

    Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  PubMed  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 10:2115–2124

    Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Lie Y, West L, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185

    Article  PubMed  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  PubMed  CAS  Google Scholar 

  • Sing NC, Johnston LAY, Leatch G (1983) The economics of cattle tick control in the dry tropical Australia. Aust Vet J 60:37–39

    Article  PubMed  CAS  Google Scholar 

  • Sontakke S, Modak J, Madras G (2010) Photocatalytic inactivation of E. coli and Pichia pastoris with combustion synthesized titanium dioxide. Chem Eng J. doi:10.1016

  • Soulsby EJL (1982) Helminths, arthropods and protozoa of domesticated animals. Bailliere Tindall, London

    Google Scholar 

  • Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Letters 447–451

  • Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer protected cluster molecules. Acc Chem Res 33:27

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsion for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velayutham, K., Rahuman, A.A., Rajakumar, G. et al. Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis . Parasitol Res 111, 2329–2337 (2012). https://doi.org/10.1007/s00436-011-2676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2676-x

Keywords

Navigation