Skip to main content

Advertisement

Log in

Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study explored the effects of Jatropha curcas, Hyptis suaveolens, Abutilon indicum, and Leucas aspera tested against third instar larvae of filarial vector, Culex quinquefasciatus. The dried plant materials were powdered by an electrical blender. From each sample, 500 g powder was macerated with 1.5 L of hexane, chloroform, ethyl acetate, and methanol 8h, using Soxhlet apparatus, and filtered. The extracts were concentrated at reduced temperature on a rotary evaporator and stored at a temperature of 4°C. The yield of crude extract was 11.4, 12.2, 10.6, and 13.5 g in hexane, chloroform, ethyl acetate, and methanol, respectively. The hexane, chloroform, ethyl acetate, and methanol extract of J. curcas with LC50 values of 230.32, 212.85, 192.07, and 113.23 ppm; H. suaveolens with LC50 values of 213.09, 217.64, 167.59, and 86.93 ppm; A. indicum with LC50 values of 204.18, 155.53, 166.32, and 111.58 ppm; and L. aspera with LC50 values of 152.18, 118.29, 111.43, and 107.73 ppm, respectively, against third instar larvae of C. quinquefasciatus. The larval mortality was observed after 24 h of exposure. Maximum larvicidal activity was observed in the methanolic extract followed by ethyl acetate, chloroform, and hexane extract. No mortality was observed in the control. The observed mortality were statistically significant at P < 0.05 level. L. aspera showed the highest mortality rate against the mosquito larvae in laboratory and field. The larval density was decreased after the treatment of plant extracts at the breeding sites (sewage water), and hence, these plant extracts of the suitable alternatives of synthetic insecticides for the mosquito vector management. The present results suggest that the medicinal plants extract was an excellent potential for controlling filarial vector, C. quinquefasciatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of insecticides. J Econ Entomol 18:267–269

    Google Scholar 

  • Ahmed M, Amin S, Islam M, Takahashi M, Okuyama E, Hossain CF (2000) Analgesic principle from Abutilon indicum. Pharmazie 55:314

    PubMed  CAS  Google Scholar 

  • Ali A (1981) Bacillus thuringiensis var. israelensis (ABG-6108) against Chironomids and some non target aquatic invertebrates. J Invertebr Pathol 38:264–272

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera: Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amusan AAS, Idowu AB, Arowolo FS (2005) Comparative toxicity effect of bush tea leaves (Hyptis suaveolens) and orange peel (Citrus sinensis) oil extract on larvae of the yellow fever mosquito Aedes aegypti. Tanzan Health Res Bull 7:174–178

    PubMed  CAS  Google Scholar 

  • Anyaele OO, Amusan AAS, Okorie TG, Oke OA (2002) Toxicological of hexanolic extract of Piper guinense Schum and Thonn (Piperaceae) seed oil to larvae of Aedes aegypti. Nigeria J Entomol 19:15–21

    Google Scholar 

  • Azevedo NA, Campos LFP, Ferreira HD (2001) Chemical variability in the essential oil of Hyptis suaveolens. Phytochemistry 57:733–736

    Article  PubMed  CAS  Google Scholar 

  • Babu R, Murugan K (2000) Larvicidal effect of resinous exudates from the tender leaves of Azadirachta indica. Neem Newsl 17:1

    Google Scholar 

  • Bagavan A, Kamaraj C, Rahuman AA, Elango G, Zahir AA, Pandiyan G (2009) Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitol Res 104:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Chandre F, Darriet F et al (1998) Pyrethroid resitance in Culex quinquefasciatus from West Africa. Med Vet Entomol 12:359–366

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee SK, Majumdar DN (1969) Chemical investigation of Leucas aspera. J Inst Chem 41:98–101

    CAS  Google Scholar 

  • Chaudhury NA, Ghosh D (1969) Insecticidal plants: chemical examination of Leucas aspera. J Indian Chem Soc 46:95

    CAS  Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1992) Glossary of Indian medicinal plants, vol 2. Council for Scientific and Industrial Research, New Delhi, p 12

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  • Garcia R, Desrochers BD (1979) Toxicity of Bacillus thuringiensis var. israelensis to some California mosquitoes under different conditions. Mosq News 39:541–544

    Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    Article  PubMed  CAS  Google Scholar 

  • Green MM, Singer JM et al (1981) Larvicidal activity of Tagetes minuta (Marigold) towards Aedes aegypti. J Am Mosq Control Assoc 7:282–286

    Google Scholar 

  • Kalachaveedu M, Ghosh A, Ranjan R, VedamVenkat K (2006) Volatile constituents of Leucas aspera (Willd.). J Essent Oil Res 18:104–105

    Article  Google Scholar 

  • Kalyanasundaram M, Das PK (1985) Larvicidal and synergistic activity of plant extracts for mosquito control. Indian J Med Res 82:19–23

    PubMed  CAS  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Kamat M, Singh TP (1994) Preliminary chemical examination of some compounds in the different parts of the genus Leucas. Geobios 21:31–33

    CAS  Google Scholar 

  • Kaushik N, Kumar S (2005) Jatropha curcas L. Silviculture and uses. Agrobios (India), Jodhpur. p. 1–27

  • Khaleque A, Huq ME, Huq MS, Mansoor MH (1970) Chemical investigations on Leucas aspera. I. Isolation of compound-A, 3- sitosterol and et-sitosterol from the aerial parts. Scientific Res 7:125–127

    CAS  Google Scholar 

  • Kiritikar KR, Basu BD (1999) Indian Medicinal Plants; 2nd Edition; International Book Distribution; India. pp. 999–1000

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011a) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res 109:1251–1257

    Article  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2011b) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2469-2

  • Kovendan K, Murugan K, Vincent S (2011c) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2525-y

  • Kuppusamy C, Murugan K (2008) Mosquitocidal effect of Euphorbia heterophylla Linn. Against the Bancroftian filariasis vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Int J Intg Boil 4(1):34–39

    Google Scholar 

  • Maheswaran R, Kingley S, Ignacimuthu S (2008) Larvcidal and repellent activity of Clerodendron phlomodes against Culex quinquefasciatus Say (Diptera: Culicidae). In: Proceedings of Recent Trends in Insect Pest Management, Elite publications pp.240-243

  • Maheswaran R, Sathish, Ignacimuthu S (2008b) Larvicidal activity of Leucas aspera (Wild) againt the larvae of Culex quinquefaciatus Say and Aedes aegypti L. Int J Int Biol 2(3):24–217

    Google Scholar 

  • Mangathayaru K, Thirumurugan D, Patel PS, Pratap DV, David DJ, Karthikeyan J (2006) Isolation and identification of nicotine from Leucas aspera (Willd). Indian J Pharm Sci 68:88–90

    Article  CAS  Google Scholar 

  • Michael E, Bundy DA, Grenfell BT (1996) Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 112(4):409–428

    Article  PubMed  Google Scholar 

  • Morton JF (1981) Atlas of medicinal plants of Middle America. Bahamas to Yucatan. C.C. Thomas, Springfield

    Google Scholar 

  • Mullai K, Jebanesan A (2007) Larvicidal, ovicidal and repellent activities of the leaf extract of two cucurbitaceous plants against filarial vector Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 24(1):1–6

    PubMed  CAS  Google Scholar 

  • Murugan K, Jeyabalan D (1999) Effect of certain plant extracts against the mosquito, Anopheles stephensi Liston. Curr Sci 76(5):631–633

    Google Scholar 

  • Muthukrishnan J, Pusphalatha H, Kasthuribhai (1997) Biological effects of four plant extracts on Culex quinquefasciatus Say. Larval stages. Insect Sci Appl 17(3/4):389–394

    Google Scholar 

  • Mwangi RW, Rembold H (1998) Growth inhibitory inhibiting and larvicidal effects of Melia volkenski extracts on Aedes aegypti larvae. Entomol Exp Appl 46:103–108

    Article  Google Scholar 

  • NICD (1990) Proceeding of the National Seminar on operation research on vector control in Filariasis, New Delhi

  • Okigbo RN, Okeke JJ, Madu NC (2010) Larvicidal effects of Azadirachta indica, Ocimum gratissimum and Hyptis suaveolens against mosquito larvae. J Agric Technol 6(4):703–719

    Google Scholar 

  • Peerzada N (1997) Chemical composition of the essential oil of Hyptis suaveolens. Molecule 2:165–168

    Article  CAS  Google Scholar 

  • Prabhu K, Murugan K, Nareshkumar A, Ramasubramanian N, Bragadeeswaran S (2011) Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). A Pac J Tropical Biomed 127–132

  • Promsiri S, Naksathit A, Kruatrachue M, Tharava U (2000) Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. J Insect Sci 13:179–188

    Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2007) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102(5):981–988

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008b) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873

    Article  PubMed  Google Scholar 

  • Ramaiah KD, Das PK, Michael E, Guyatt H (2000) The economic burden of lymphatic filariasis in India. Parasitol 6:251–253

    Google Scholar 

  • Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW, Collins FH, Hemingway J (2001) Identification of novel class of insect glutahionine S-tranferases involved in resistance to DDT in the malaria vector Anopheles gambiae. J Bio Chem 359(2):295–304

    CAS  Google Scholar 

  • Rao DR, Reuben R, Nagasampagi BA (1995) Development of combined use of Neem (Azadirachta indica) and water management for the control of culicine mosquitoes in rice fields. Med Vet Entomol 9:25–33

    Article  PubMed  CAS  Google Scholar 

  • Raymond T (1999) Review of toxicological literature. http://ntpserver.niehs.nih.gov/htdocs/chem

  • Reddy KM, Viswanathan S, Thirugnanasambantham D, Santa R, Lalitha K (1993) Analestic activity of Leucas aspera. Fitoerpia 64:151–154

    Google Scholar 

  • Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M (2003) Separation of Leucas aspera, a medicinal plant of Bangladesh, guided by protaglandian inhibitory and antioxidant activities. Chem Pharm Bull 51:595–598

    Article  PubMed  CAS  Google Scholar 

  • Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M (2006) Diterpenes from Leucas aspera inhibiting prostaglandin-induced contractions. J Nat Prod 69:988–994

    Article  PubMed  CAS  Google Scholar 

  • Sakthivadivel M, Daniel T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitos’ vis. Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Appl Entomol Zool 43:57–63

    Article  Google Scholar 

  • Sharma M, Saxena RC (1994) Phytotoxicological evaluation of Tagetes erects on aquatic stages of Anopheles stephensi. Ind J Malariol 31:21–26

    CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2005) Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector. J Environ Biol 26(4):657–660

    PubMed  Google Scholar 

  • Sun R, Sacalis JN, Chin CK, Still CC (1994) Bioactive aromatic compounds from leaves and stems of vanilla fragrans. J Agri Food Chem 49:5161

    Article  Google Scholar 

  • Taubles G (1997) A mosquito bites back. N Y Times Mag 24:40–46

    Google Scholar 

  • Vahitha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus Say. Biores Technol 82:203–204

    Article  CAS  Google Scholar 

  • Vogel (1978) Textbook of practical organic chemistry. The English Language Book Society and Longman, London, p 1368

    Google Scholar 

  • World Health Organization (1984) Lymphatic filariasis. Technical Report Series, 702. WHO, Geneva

  • World Health Organization (2007) Entomological profile of malaria in Ethiopia. WHO/Regional office for Africa, Africa

  • Yoganarasimhan SN (2000) Medicinal plants of india, vol 2. Cyber Media, Bangalore, p 10

    Google Scholar 

  • Zewdneh T, Mamuye H, Asegid T, Yalemtsehay M, Beyene P (2011) Larvicidal effects of Jatropha curcas L. against Anopheles arabiensis (Diptera: Culicidea). MEJS 3(1):52–64

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Science and Technology (DST), New Delhi, India, and Tamil Nadu State Council for Science and Technology (TNSCST), Chennai, Tamil Nadu for providing financial support for the present work. The authors are grateful to the Dr. K. Sasikala, Professor and Head, Department of Zoology, Bharathiar University for the laboratory facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovendan, K., Murugan, K., Panneerselvam, C. et al. Laboratory and field evaluation of medicinal plant extracts against filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 110, 2105–2115 (2012). https://doi.org/10.1007/s00436-011-2736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2736-2

Keywords

Navigation