Skip to main content
Log in

Two different transposable elements inserted in flavonoid 3′,5′-hydroxylase gene contribute to pink flower coloration in Gentiana scabra

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Pink-flowered gentian plants (Gentiana scabra) have been bred from spontaneous mutations of blue-flowered gentian plants, but the formation mechanism(s) is unknown so far. To investigate the process, two independent pink-flowered gentian plant lines were analyzed by a molecular biological approach. HPLC analysis showed that petals of the blue-flowered cultivar contained a small amount of cyanidin derivatives and major delphinidin derivatives, whereas pink petals had only a small amount of cyanidin derivatives. To find the causal factor(s) of this change, we focused on flavonoid 3′,5′-hydroxylase (F3′,5′H), which is a key enzyme for delphinidin biosynthesis in the flavonoid biosynthetic pathway. Molecular analyses confirmed that the loss of delphinidin synthesis could be attributed to the insertions of different transposable elements in the F3′,5′H gene in each independent pink-flowered gentian plant. Sequence analysis showed that these transposable elements were classified into an hAT superfamily and terminal-repeat retrotransposon in miniature (TRIM), by which normal F3′,5′H transcripts were interrupted. Southern blot analysis indicated that they belong to high copy number elements and are also found in a related gentian species (G. triflora). These results suggest that the transposable elements inserted in F3′,5′H are the source of the mutations and may also play a substantial role in the genomic evolution of the genus Gentiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Brown JJ, Mattes MG, O’Reilly C, Shepherd NS (1989) Molecular characterization of rDt, a maize transposon of the “Dotted” controlling element system. Mol Gen Genet 215:239–244

    Article  PubMed  CAS  Google Scholar 

  • Carpenter R, Martin C, Coen ES (1987) Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus. Mol Gen Genet 207:82–89

    Article  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Tanaka Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Nakao M, Fukui Y, Yamaguchi M, Ashikari T, Kusumi T (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J 16:421–431

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y (2003) Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3′-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol 132:1652–1663

    Article  PubMed  CAS  Google Scholar 

  • Gerats AG, Huits H, Vrijlandt E, Marana C, Souer E, Beld M (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Kondo T, Tamura H, Imagawa H, Iino H, Takeda K (1982) Structure of gentiodelphin, an acylated anthocyanin isolated from Gentiana makinori, that is stable in dilute aqueous solution. Tetrahedron Lett 23:3695–3698

    Article  CAS  Google Scholar 

  • Graig NJ (2002) Mobile DNA. In: Craig NJ, Craigle R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology Press, Washington DC, pp 3–11

    Google Scholar 

  • Grandbastien MA, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    Article  PubMed  CAS  Google Scholar 

  • Grappin P, Audeon C, Chupeau MC, Grandbastien MA (1996) Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol Gen Genet 252:386–397

    PubMed  CAS  Google Scholar 

  • Hashida S, Kitamura K, Mikami T, Kishima Y (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiol 132:1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Hehl R, Nacken WK, Krause A, Saedler H, Sommer H (1991) Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol 16:369–371

    Article  PubMed  CAS  Google Scholar 

  • Henk AD, Warren RF, Innes RW (1999) A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics 151:1581–1589

    PubMed  CAS  Google Scholar 

  • Hirochika H, Fukuchi A, Kikuchi F (1992) Retrotransposon families in rice. Mol Gen Genet 233:209–216

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JG, Lu CY, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276–279

    Article  PubMed  CAS  Google Scholar 

  • Holten TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  PubMed  Google Scholar 

  • Hoshino A, Morita Y, Choi JD, Saito N, Toki K, Tanaka Y, Iida S (2003) Spontaneous mutations of the flavonoid 3′-hydroxylase gene conferring reddish flowers in the three morning glory species. Plant Cell Physiol 44:990–1001

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa K, Fukushi E, Kawabata J, Fujii C, Ito T, Yamamura S (1995) Three acylated cyanidin glucosides in pink flowers of Gentiana. Phytochemistry 40:941–944

    Article  CAS  Google Scholar 

  • Hosokawa K, Fukushi E, Kawabata J, Fujii C, Ito T, Yamamura S (1997) Seven acylated anthocyanins in blue flowers of Gentiana. Phytochemistry 45:167–171

    Article  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Terauchi K, Wada M, Hirano H (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Oikawa Y, Koiwa H, Yamamura S (1998) Flower-specific expression directed by the promoter of a chalcone synthase gene from Gentiana triflora in Petunia hybrida. Plant Sci 131:173–180

    Article  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Kreahling J, Graveley BR (2004) The origins and implications of alternative splicing. Trends Genet 20:1–4

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kunze R, Starlinger P (1989) The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J 8:3177–3185

    PubMed  CAS  Google Scholar 

  • Kunze R, Weil CF (2002) The hAT and CACTA superfamilies of plant transposons. In: Craig NJ, Craigle R, Gellert M, Lambowitz AM (eds) Mobile DNA II. American Society for Microbiology Press, Washington DC, pp 565–610

    Google Scholar 

  • Liu D, Crawford NM (1998) Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag1. Genetics 148:445–456

    PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–331

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  PubMed  CAS  Google Scholar 

  • Muller-Neumann M, Yoder JI, Starlinger P (1984) The DNA sequence of the transposable element Ac of Zea mays L. Mol Gen Genet 198:19–24

    Article  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–216

    Article  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2005) Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci 168:1309–1318

    Article  CAS  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenic trees on personal computers. Comp Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J 5:835–841

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Napoli CA (1998) Psl: a novel Spm-like transposable element from Petunia hybrida. Plant J 14:43–54

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Ast G, Graur D (2002) Alu-containing exons are alternatively spliced. Genome Res 12:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Yonekura K, Fukuchi-Mizutani M, Fukui Y, Fujiwara H, Ashikari T, Kusumi T (1996) Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol 37:711–716

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van Houwelingen A, Souer E, Spelt K, Kloos D, Mol J, Koes R (1998) Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J 13:39–50

    Article  PubMed  Google Scholar 

  • Varagona MJ, Purugganan M, Wessler SR (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4:811–820

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Kalendar R, Anamthawat-Jonsson K, Schulman AH (1999) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica 107:53–63

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783

    Article  PubMed  CAS  Google Scholar 

  • Witte CP, Tiller S, Isidore E, Davies HV, Taylor MA (2005) Analysis of two alleles of the urease gene from potato: polymorphisms, expression, and extensive alternative splicing of the corresponding mRNA. J Exp Bot 56:91–99

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Katsuo Kodama (Iwate Agriculture Research Center, Japan) for providing the gentian materials. We also thank Dr. Yoshihiro Ozeki (Tokyo University of Agriculture and Technology, Japan) and Dr. Toshio Aoki (Nihon University, Japan) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nishihara.

Additional information

Communicated by M.-A. Grandbastien

Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB222604 (Gentiana scabra F3’,5’H genome sequence), AB222605 (dTgs1), and AB222606 (GsTRIM1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatsuka, T., Nishihara, M., Mishiba, K. et al. Two different transposable elements inserted in flavonoid 3′,5′-hydroxylase gene contribute to pink flower coloration in Gentiana scabra . Mol Genet Genomics 275, 231–241 (2006). https://doi.org/10.1007/s00438-005-0083-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0083-7

Keywords

Navigation