Skip to main content

Advertisement

Log in

Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, whereas only a limited number of bacteria are able to synthesize PC. Intriguingly, many of the bacteria with PC-containing membranes interact with eukaryotic hosts. PC is one of the major membrane lipids in the phytopathogenic bacterium Agrobacterium tumefaciens. The presence of PC is critical for diverse cellular processes like motility, biofilm formation, stress resistance, and virulence. The exact role of PC in these processes is unknown. Here, we examined the global consequences of the complete loss of PC at the proteomic and transcriptomic levels. Both strategies validated the impaired virulence gene induction responsible for the virulence defect of the PC-deficient mutant. In addition, the proteomic approach revealed a limited subset of proteins with altered abundance including the reduced flagellar proteins FlaA and FlaB, which explains the motility defect of the PC mutant. At the whole-genome level, the loss of PC was correlated with altered expression of up to 13% of all genes, most encoding membrane or membrane-associated proteins and proteins with functions in the extracytoplasmic stress response. Our integrated analysis revealed that A. tumefaciens dynamically remodels its membrane protein composition in order to sustain normal growth in the absence of PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aktas M, Narberhaus F (2009) In vitro characterization of the enzyme properties of the phospholipid N-methyltransferase PmtA from Agrobacterium tumefaciens. J Bacteriol 191:2033–2041

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L, Tang Y, Mysore KS (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    Article  CAS  PubMed  Google Scholar 

  • Arondel V, Benning C, Somerville CR (1993) Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem 268:16002–16008

    CAS  PubMed  Google Scholar 

  • Babst M, Hennecke H, Fischer HM (1996) Two different mechanisms are involved in the heat-shock regulation of chaperonin gene expression in Bradyrhizobium japonicum. Mol Microbiol 19:827–839

    Article  CAS  PubMed  Google Scholar 

  • Bandow JE, Baker JD, Berth M, Painter C, Sepulveda OJ, Clark KA, Kilty I, VanBogelen RA (2008) Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies—COPD biomarker discovery study. Proteomics 8:3030–3041

    Article  CAS  PubMed  Google Scholar 

  • Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861

    Article  CAS  PubMed  Google Scholar 

  • Braun V (1997) Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch Microbiol 167:325–331

    Article  CAS  PubMed  Google Scholar 

  • Canty DJ, Zeisel SH (1994) Lecithin and choline in human health and disease. Nutr Rev 52:327–339

    Article  CAS  PubMed  Google Scholar 

  • Charles TC, Nester EW (1993) A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 175:6614–6625

    CAS  PubMed  Google Scholar 

  • Chesnokova O, Coutinho JB, Khan IH, Mikhail MS, Kado CI (1997) Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence. Mol Microbiol 23:579–590

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci USA 102:14843–14848

    Article  CAS  PubMed  Google Scholar 

  • Christie PJ, Cascales E (2005) Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol 22:51–61

    Article  CAS  PubMed  Google Scholar 

  • Comerci DJ, Altabe S, de Mendoza D, Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 188:1929–1934

    Article  CAS  PubMed  Google Scholar 

  • Conde-Alvarez R, Grilló MJ, Salcedo SP, de Miguel MJ, Fugier E, Gorvel JP, Moriyón I, Iriarte M (2006) Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8:1322–1335

    Article  CAS  PubMed  Google Scholar 

  • Conover GM, Martínez-Morales F, Heidtman MI, Luo ZQ, Tang M, Chen C, Geiger O, Isberg RR (2008) Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cell Microbiol 10:514–528

    CAS  PubMed  Google Scholar 

  • de Kroon AI (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta 1771:343–352

    PubMed  Google Scholar 

  • de Rudder KE, Thomas-Oates JE, Geiger O (1997) Rhizobium meliloti mutants deficient in phospholipid N-methyltransferase still contain phosphatidylcholine. J Bacteriol 179:6921–6928

    PubMed  Google Scholar 

  • de Rudder KE, Sohlenkamp C, Geiger O (1999) Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J Biol Chem 274:20011–20016

    Article  PubMed  Google Scholar 

  • de Rudder KE, López-Lara IM, Geiger O (2000) Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 37:763–772

    Article  PubMed  Google Scholar 

  • Deakin WJ, Parker VE, Wright EL, Ashcroft KJ, Loake GJ, Shaw CH (1999) Agrobacterium tumefaciens possesses a fourth flagelin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology 145:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Christie PJ (2003) Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185:760–771

    Article  CAS  PubMed  Google Scholar 

  • Goodner B, Hinkle G, Gattung S et al (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:2323–2328

    Article  CAS  PubMed  Google Scholar 

  • Gust R, Schnurr B, Krauser R, Bernhardt G, Koch M, Schmid B, Hummel E, Schönenberger H (1998) Stability and cellular studies of [rac-1,2-bis(4-fluorophenyl)-ethylenediamine][cyclobutane-1,1-dicarboxylato]platinum(II), a novel, highly active carboplatin derivative. J Cancer Res Clin Oncol 124:585–597

    Article  CAS  PubMed  Google Scholar 

  • Hacker S, Gödeke J, Lindemann A, Mesa S, Pessi G, Narberhaus F (2008a) Global consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum. Mol Genet Genomics 280:59–72

    Article  CAS  PubMed  Google Scholar 

  • Hacker S, Sohlenkamp C, Aktas M, Geiger O, Narberhaus F (2008b) Multiple phospholipid N-methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum. J Bacteriol 190:571–580

    Article  CAS  PubMed  Google Scholar 

  • Hanada T, Kashima Y, Kosugi A, Koizumi Y, Yanagida F, Udaka S (2001) A gene encoding phosphatidylethanolamine N-methyltransferase from Acetobacter aceti and some properties of its disruptant. Biosci Biotechnol Biochem 65:2741–2748

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hindahl MS, Iglewski BH (1984) Isolation and characterization of the Legionella pneumophila outer membrane. J Bacteriol 159:107–113

    CAS  PubMed  Google Scholar 

  • Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642

    Article  CAS  PubMed  Google Scholar 

  • Kaneshiro T, Law JH (1964) Phosphatidylcholine synthesis in Agrobacterium tumefaciens. I. Purification and properties of a phosphatidylethanolamine N-methyltransferase. J Biol Chem 239:1705–1713

    CAS  PubMed  Google Scholar 

  • Kent C, Gee P, Lee SY, Bian X, Fenno JC (2004) A CDP-choline pathway for phosphatidylcholine biosynthesis in Treponema denticola. Mol Microbiol 51:471–481

    Article  CAS  PubMed  Google Scholar 

  • Klüsener S, Aktas M, Thormann KM, Wessel M, Narberhaus F (2009) Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes. J Bacteriol 191:365–374

    Article  PubMed  CAS  Google Scholar 

  • Lai EM, Chesnokova O, Banta LM, Kado CI (2000) Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182:3705–3716

    Article  CAS  PubMed  Google Scholar 

  • Lai EM, Shih HW, Wen SR, Cheng MW, Hwang HH, Chiu SH (2006) Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6:4130–4136

    Article  CAS  PubMed  Google Scholar 

  • Lamanda A, Zahn A, Roder D, Langen H (2004) Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. Proteomics 4:599–608

    Article  CAS  PubMed  Google Scholar 

  • Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99:12369–12374

    Article  CAS  PubMed  Google Scholar 

  • Liu AC, Shih HW, Hsu T, Lai EM (2008) A citrate-inducible gene, encoding a putative tricarboxylate transporter, is downregulated by the organic solvent DMSO in Agrobacterium tumefaciens. J Appl Microbiol 105:1372–1383

    Article  CAS  PubMed  Google Scholar 

  • Mantis NJ, Winans SC (1993) The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol 175:6626–6636

    CAS  PubMed  Google Scholar 

  • Martínez-Morales F, Schobert M, López-Lara IM, Geiger O (2003) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149:3461–3471

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbour Laboratory Press, Cold Spring Harbour

    Google Scholar 

  • Minder AC, de Rudder KE, Narberhaus F, Fischer HM, Hennecke H, Geiger O (2001) Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol 39:1186–1198

    Article  CAS  PubMed  Google Scholar 

  • Ngok-Ngam P, Ruangkiattikul N, Mahavihakanont A, Virgem SS, Sukchawalit R, Mongkolsuk S (2009) Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol 191:2083–2090

    Article  CAS  PubMed  Google Scholar 

  • Ott I, Schmidt K, Kircher B, Schumacher P, Wiglenda T, Gust R (2005) Antitumor-active cobalt-alkyne complexes derived from acetylsalicylic acid: studies on the mode of drug action. J Med Chem 48:622–629

    Article  CAS  PubMed  Google Scholar 

  • Ott I, Schäffler H, Gust R (2007) Development of a method for the quantification of the molar gold concentration in tumour cells exposed to gold containing drugs. ChemMedChem 2:702–707

    Article  CAS  PubMed  Google Scholar 

  • Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150:3857–3866

    Article  CAS  PubMed  Google Scholar 

  • Salzberg LI, Helmann JD (2008) Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol 190:7797–7807

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Eisenlohr H, Domke N, Angerer C, Wanner G, Zambryski PC, Baron C (1999) Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181:7485–7492

    CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, de Rudder KE, Röhrs VV, López-Lara IM, Geiger O (2000) Cloning and characterization of the gene for phosphatidylcholine synthase. J Biol Chem 275:18919–18925

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162

    Article  CAS  PubMed  Google Scholar 

  • Tahara Y, Yamashita T, Sogabe A, Ogawa Y (1994) Isolation and characterization of Zymomonas mobilis mutant defective in phosphatidylethanolamine N-methyltransferase. J Gen Appl Microbiol 40:389–396

    Article  CAS  Google Scholar 

  • Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S, Narberhaus F (2006) Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 62:906–915

    Article  CAS  PubMed  Google Scholar 

  • Wilderman PJ, Vasil AI, Martin WE, Murphy RC, Vasil ML (2002) Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol 184:4792–4799

    Article  CAS  PubMed  Google Scholar 

  • Winans SC (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J Bacteriol 172:2433–2438

    CAS  PubMed  Google Scholar 

  • Winans SC (1992) Two-way chemical signaling in Agrobacterium–plant interactions. Microbiol Rev 56:12–31

    CAS  PubMed  Google Scholar 

  • Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170:4047–4054

    CAS  PubMed  Google Scholar 

  • Wolff S, Hahne H, Hecker M, Becher D (2008) Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus. Mol Cell Proteomics 7:1460–1468

    Article  CAS  PubMed  Google Scholar 

  • Wood DW, Setubal JC, Kaul R et al (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Wu HY, Chung PC, Shih HW, Wen SR, Lai EM (2008) Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190:2841–2850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Knut Büttner (Greifswald) for MALDI-MS analyses, Hauke Hennecke and co-workers (Zürich) for providing access to the GeneSpring gene expression analysis software, Birgit Scharf (Blacksburg, Virginia) for antiflagella sera, and Christian Baron (Montreal) for VirB9 antisera. We thank Yi-Chun Chen (Taipei) for constructing pAC01-virBp and pAC01-tzsp, Meriyem Aktas and Sina Langklotz for helpful comments on this manuscript, and Christiane Fritz for technical assistance. The work was in part supported by a grant the German Research Foundation (DFG NA 240/7) to FN, a grant from Taiwan National Science Council (NSC 95-2320-B-001-009) to EML and a joint grant from the German Academic Exchange Service (DAAD) and the Taiwan National Science Council (PPP grant no. 0970029248P) to FN and EML.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Narberhaus.

Additional information

Communicated by M. Hecker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klüsener, S., Hacker, S., Tsai, YL. et al. Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant. Mol Genet Genomics 283, 575–589 (2010). https://doi.org/10.1007/s00438-010-0542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0542-7

Keywords

Navigation