Skip to main content

Advertisement

Log in

Parallel evolution or purifying selection, not introgression, explains similarity in the pyrethroid detoxification linked GSTE4 of Anopheles gambiae and An. arabiensis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Insecticide resistance is a major impediment to the control of vectors and pests of public health importance and is a strongly selected trait capable of rapid spread, sometimes even between closely related species. Elucidating the mechanisms generating insecticide resistance in mosquito vectors of disease, and understanding the spread of resistance within and between populations and species are vital for the development of robust resistance management strategies. Here, we studied the mechanisms of resistance in two sympatric members of the Anopheles gambiae species complex—the major vector of malaria in sub-Saharan Africa—to understand how resistance has developed and spread in eastern Uganda, a region with some of the highest levels of malaria. In eastern Uganda, where the mosquitoes Anopheles arabiensis and An. gambiae can be found sympatrically, low levels of hybrids (0.4 %) occur, offering a route for introgression of adaptively important variants between species. In independent microarray studies of insecticide resistance, Gste4, an insect-specific glutathione S-transferase, was among the most significantly up-regulated genes in both species. To test the hypothesis of interspecific introgression, we sequenced 2.3 kbp encompassing Gste4. Whilst this detailed sequencing ruled out introgression, we detected strong positive selection acting on Gste4. However, these sequences, followed by haplotype-specific qPCR, showed that the apparent up-regulation in An. arabiensis is a result of allelic variation across the microarray probe binding sites which artefactually elevates the gene expression signal. Thus, face-value acceptance of microarray data can be misleading and it is advisable to conduct a more detailed investigation of the causes and nature of such signal. The identification of positive selection acting on this locus led us to functionally express and characterise allelic variants of GSTE4. Although the in vitro data do not support a direct role for GSTE4 in metabolism, they do support a role for this enzyme in insecticide sequestration. Thus, the demonstration of a role for an up-regulated gene in metabolic resistance to insecticides should not be limited to simply whether it can metabolise insecticide; such a strict criterion would argue against the involvement of GSTE4 despite the weight of evidence to the contrary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreassi C, Riccio A (2009) To localize or not to localize: mRNA fate is in 3′ UTR ends. Trends Cell Biol 19(9):465–474

    Article  CAS  PubMed  Google Scholar 

  • Aubert J, Bar-Hen A, Daudin J-J, Robin S (2004) Determination of the differentially expressed genes in microarray experiments using local FDR. BMC Bioinf 5(1):125

    Article  CAS  Google Scholar 

  • Ayres CF, Muller P, Dyer N, Wilding CS, Rigden DJ, Donnelly MJ (2011) Comparative genomics of the anopheline glutathione S-transferase epsilon cluster. PLoS ONE 6(12):e29237

  • Barrett LW, Fletcher S, Wilton SD (2012) Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 69(21):3613–3634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, Vontas J, Field LM (2007) Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J 6:e111

    Article  Google Scholar 

  • Bayoh MN, Mathias D, Odiere M, Mutuku F, Kamau L, Gimnig J, Vulule J, Hawley W, Hamel M, Walker E (2010) Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province Kenya. Malar J 9(1):62

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Derua Y, Alifrangis M, Hosea K, Meyrowitsch D, Magesa S, Pedersen E, Simonsen P (2012) Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar J 11(1):188

    Article  PubMed Central  PubMed  Google Scholar 

  • Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C (2008) Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genom 9:e538

    Article  Google Scholar 

  • Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WC (2009) Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 25(5):213–219

    Article  CAS  PubMed  Google Scholar 

  • Dowd AJ, Morou E, Steven A, Ismail HM, Labrou N, Hemingway J, Paine MJI, Vontas J (2010) Development of a colourimetric pH assay for the quantification of pyrethroids based on glutathione-S-transferase. Int J Environ Anal Chem 90(12):922–933

    Article  CAS  Google Scholar 

  • Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, Coetzee M, Zheng L (2005) Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 14(2):179–183

    Article  CAS  PubMed  Google Scholar 

  • Fossog Tene B, Poupardin R, Costantini C, Awono-Ambene P, Wondji CS, Ranson H, Antonio-Nkondjio C (2013) Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PLoS One 8(4):e61408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-s-transferases—first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  CAS  PubMed  Google Scholar 

  • Jagannathan P, Muhindo M, Kakuru A, Arinaitwe E, Greenhouse B, Tappero J, Rosenthal P, Kaharuza F, Kamya M, Dorsey G (2012) Increasing incidence of malaria in children despite insecticide-treated bed nets and prompt anti-malarial therapy in Tororo Uganda. Malar J 11(1):435

    Article  PubMed Central  PubMed  Google Scholar 

  • Jirajaroenrat K, Pongjaroenkit S, Krittanai C, Prapanthadara L-a, Ketterman AJ (2001) Heterologous expression and characterization of alternatively spliced glutathione S-transferases from a single Anopheles gene. Insect Biochem Mol Biol 31(9):867–875

    Article  CAS  PubMed  Google Scholar 

  • Kigozi R, Baxi SM, Gasasira A, Sserwanga A, Kakeeto S, Nasr S, Rubahika D, Dissanayake G, Kamya MR, Filler S, Dorsey G (2012) Indoor residual spraying of insecticide and malaria morbidity in a high transmission intensity area of Uganda. PLoS One 7(8):e42857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, Kamya MR, Staedke SG, Donnelly MJ, Drakeley C, Greenhouse B, Dorsey G, Lindsay SW (2014) Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malaria J 13(1):111

    Article  Google Scholar 

  • Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E (2001) Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 31(4–5):313–319

    Article  CAS  PubMed  Google Scholar 

  • Kristensen TN, Sørensen P, Kruhøffer M, Pedersen KS, Loeschcke V (2005) Genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171(1):157–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S, Jones CM, Diabaté A, Ranson H, Wondji CS (2013) Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallée du Kou, Burkina Faso. Gene 519(1):98–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li YF, Costello JC, Holloway AK, Hahn MW (2008) Reverse ecology and the power of population genomics. Evolution 62(12):2984–2994

    Article  PubMed Central  PubMed  Google Scholar 

  • Li J, Ribeiro JMC, Yan G (2010) Allelic gene structure variations in Anopheles gambiae mosquitoes. PLoS One 5(5):e10699

    Article  PubMed Central  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lindblade KA, Gimnig JE, Kamau L, Hawley WA, Odhiambo F, Olang G, Ter Kuile FO, Vulule JM, Slutsker L (2006) Impact of sustained use of insecticide-treated bednets on malaria vector species distribution and culicine mosquitoes. J Med Entomol 43(2):428–432

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mawejje HD, Wilding CS, Rippon EJ, Hughes A, Weetman D, Donnelly MJ (2013) Insecticide resistance monitoring of field-collected Anopheles gambiae s.l. populations from Jinja, eastern Uganda, identifies high levels of pyrethroid resistance. Med Vet Entomol 27(3):276–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Megy K, Emrich SJ, Lawson D, Campbell D, Dialynas E, Hughes DST, Koscielny G, Louis C, MacCallum RM, Redmond SN, Sheehan A, Topalis P, Wilson D, the VectorBase C (2012) VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res 40(D1):D729–D734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell S, Stevenson B, Müller P, Wilding C, Yawson A, Field S, Hemingway J, Paine M, Ranson H, Donnelly M (2012) Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci USA 109:6147–6152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, Dadzie S, Jenkins AM, Regna K, Boko P, Djogbenou L, Muskavitch MAT, Ranson H, Paine MJI, Mayans O, Donnelly MJ (2014) Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae. PLoS ONE 9(3):e92662

    Article  PubMed Central  PubMed  Google Scholar 

  • Morgan JC, Irving H, Okedi LM, Steven A, Wondji CS (2010) Pyrethroid resistance in an Anopheles funestus population from Uganda. PLoS One 5(7):e11872

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller P, Donnelly MJ, Ranson H (2007) Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genom 8:e36

    Article  Google Scholar 

  • Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE, Mitchell SN, Ranson H, Hemingway J, Paine MJI, Donnelly MJ (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 4(11):e1000286

    Article  PubMed Central  PubMed  Google Scholar 

  • Mwangangi J, Mbogo C, Orindi B, Muturi E, Midega J, Nzovu J, Gatakaa H, Githure J, Borgemeister C, Keating J, Beier J (2013) Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J 12(1):13

    Article  PubMed Central  PubMed  Google Scholar 

  • Ng’habi KR, Horton A, Knols BGJ, Lanzaro GC (2007) A new robust diagnostic polymerase chain reaction for determining the mating status of female Anopheles gambiae mosquitoes. Am J Trop Med Hyg 77(3):485–487

    PubMed  Google Scholar 

  • Ortelli F, Rossiter LC, Vontas J, Ranson H, Hemingway J (2003) Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem J 373:957–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21(13):3017–3024

    Article  CAS  PubMed  Google Scholar 

  • Pinto J, Lynd A, Vicente JL, S F, Randle NP, Caccone A, Gentile G, Moreno M, Simard F, Charlwood JD, do Rosário VE, della Torre A, Donnelly MJ (2007) Origins and distribution of knockdown resistance mutations in the afrotropical mosquito vector Anopheles gambiae. PLoS One 11:e1243

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14(9):817–818

    Article  CAS  PubMed  Google Scholar 

  • Ramphul U, Boase T, Bass C, Okedi LM, Donnelly MJ, Muller P (2009) Insecticide resistance and its association with target-site mutations in natural populations of Anopheles gambiae from eastern Uganda. Trans R Soc Trop Med Hyg 103(11):1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Ranson H, Hemingway J (2005a) 5.11—Glutathione transferases. In: Editors-in-Chief: Lawrence IG, Kostas I, Sarjeet SG (eds) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 383–402

  • Ranson H, Hemingway J (2005b) Mosquito glutathione transferases. In: Helmut S, Lester P (eds) Methods enzymol. Academic Press, pp 226–241

  • Ranson H, Prapanthadara LA, Hemingway J (1997) Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J 324:97–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJ, Wondji CS (2013) Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc Natl Acad Sci USA 110(1):252–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JA, Brogdon WG, Collins FH (1993) Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49(4):520–529

    CAS  PubMed  Google Scholar 

  • Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(1):1–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, Lian LY, Muller P, Nikou D, Steven A, Hemingway J, Sutcliffe MJ, Paine MJ (2011) Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol 41(7):492–502

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verhaeghen K, Van Bortel W, Roelants P, Okello PE, Talisuna A, Coosemans M (2010) Spatio-temporal patterns in kdr frequency in permethrin and DDT resistant Anopheles gambiae s.s. from Uganda. Am J Trop Med Hyg 82(4):566–573

    Article  PubMed Central  PubMed  Google Scholar 

  • Vontas JG, Small GJ, Hemingway J (2001) Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357:65–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Qiu L, Ranson H, Lumjuan N, Hemingway J, Setzer W, Meehan E, Chen L (2008) Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity. J Struct Biol 164(2):228–235

    Article  CAS  PubMed  Google Scholar 

  • Weetman D, Steen K, Rippon EJ, Mawejje HD, Donnelly MJ, Wilding CS (2014) Contemporary gene flow between wild An. gambiae s.s. and An. arabiensis. Parasites and Vectors 7:345

    Article  PubMed Central  PubMed  Google Scholar 

  • WHO (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes World Health Organisation, Geneva

  • Wilding CS, Weetman D, Steen K, Donnelly MJ (2009) High, clustered, nucleotide diversity in the genome of Anopheles gambiae revealed by SNP discovery through pooled-template sequencing: implications for high-throughput genotyping protocols. BMC Genom 10:e320

    Article  Google Scholar 

  • Witzig C, Parry M, Morgan JC, Irving H, Steven A, Cuamba N, Kerah-Hinzoumbe C, Ranson H, Wondji CS (2013) Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad. Heredity 110(4):389–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH, Coetzee M, Hemingway J, Ranson H (2009) Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res 19:452–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Yang H, Churchill GA (2009) http://churchill.jax.org/software/rmaanova/maanova.pdf

  • Weetman D, Wilding CS, Müller P, Steen K, Rippon EJ, Morgan JC, Mawejje HD, Rigden D, Okedi LM, Donnelly MJ (unpublished) Metabolic gene polymorphisms contribute to class I and II pyrethroid resistance in East African Anopheles gambiae

  • Yeka A, Gasasira A, Mpimbaza A, Achan J, Nankabirwa J, Nsobya S, Staedke SG, Donnelly MJ, Wabwire-Mangen F, Talisuna A, Dorsey G, Kamya MR, Rosenthal PJ (2012) Malaria in Uganda: challenges to control on the long road to elimination: I. Epidemiology and current control efforts. Acta Trop 121(3):184–195

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Kumar S (1997) Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol 14(5):527–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project described was supported by Award Numbers U19AI089674 and R01AI082734 from the National Institute of Allergy and Infectious Diseases (NIAID). HDM was supported by the Uganda Malaria Clinical Operational and Health Services (COHRE) Training Program at Makerere University, Grant #D43-TW00807701A1, from the Fogarty International Center (FIC) at the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIAID, FIC or NIH. We wish to thank John Morgan and Loyce Okedi (NaLiRi, Tororo) for assistance with mosquito collections in Tororo. CSW is grateful for advice on heterologous expression and enzyme characterisation from Andrew Dowd and Mark Paine. Samples for the Dongola colony were obtained through the MR4 as part of the BEI Resources Repository, NIAID, NIH: Anopheles arabiensis DONGOLA, MRA-856, deposited by M.Q. Benedict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Wilding.

Additional information

Communicated by S. Hohmann.

C. S. Wilding and D. Weetman have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 499 kb)

Supplementary material 2 (XLSX 3697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilding, C.S., Weetman, D., Rippon, E.J. et al. Parallel evolution or purifying selection, not introgression, explains similarity in the pyrethroid detoxification linked GSTE4 of Anopheles gambiae and An. arabiensis . Mol Genet Genomics 290, 201–215 (2015). https://doi.org/10.1007/s00438-014-0910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0910-9

Keywords

Navigation