Skip to main content
Log in

Quantitative trait loci identification and meta-analysis for rice panicle-related traits

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Rice yield is a complex trait controlled by quantitative trait loci (QTLs). In the past three decades, thousands of QTLs for rice yield traits have been detected, but only a very small percentage has been cloned to date, as identifying the QTL genes requires a substantial investment of time and money. Meta-analysis provides a simple, reliable, and economical method for integrating information from multiple QTL studies across various environmental and genetic backgrounds, detecting consistent QTLs powerfully and estimating their genetic positions precisely. In this study, we aimed to locate consistent QTL regions associated with rice panicle traits by applying a genome-wide QTL meta-analysis approach. We first conducted a QTL analysis of 5 rice panicle traits using 172 plants in 2011 and 138 plants in 2012 from an F2 population derived from a cross between Nipponbare and H71D rice cultivators. A total of 54 QTLs were detected, and these were combined with 1085 QTLs collected from 82 previous studies to perform a meta-analysis using BioMercator v4.2. The integration of 82 maps resulted in a consensus map with 6970 markers and a total map length of 1823.1 centimorgan (cM), on which 837 QTLs were projected. These QTLs were then integrated into 87 meta-quantitative trait loci (MQTLs) by meta-analysis, and the 95 % confidence intervals (CI) of them were smaller than the mean value of the original QTLs. Also, 30 MQTLs covered 47 of the 54 QTLs detected from the cross between Nipponbare and H71D in this study. Among them, the two major and stable QTLs, spp10.1 and sd10.1, were found to be included in MQTL10.4. The three other major QTLs, pl3.1, sb2.1, and sb10.1, were included in MQTL3.3, MQTL2.2, and MQTL10.3, respectively. A total of 21 of the 87 MQTLs’ phenotypic variation were >20 %. In total, 24 candidate genes were found in 15 MQTLs that spanned physical intervals <0.2 Mb, including genes that have been cloned previously, e.g., EP3, LP, MIP1, HTD1, DSH1, and OsPNH1. However, it would be beneficial to identify a greater number of candidate genes from these MQTLs. Mining new genes that modulate yield and its related traits would assist researchers to better understand the relevant molecular mechanisms. The MQTLs found in this study that have small physical and genetic intervals are useful not only for marker-assisted selection and pyramiding, but they also provide important information of rice yield and related gene mining for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M, Man B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Attia KA, Abdelkhalik AF, Ammar MH, Wei C, Yang J, Lightfoot DA, El-Sayed WM, El-Shemy HA (2009) Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Issues Mol Biol 11:i29–i34

    CAS  PubMed  Google Scholar 

  • Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  CAS  PubMed  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price A, Rami J, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a drought QTL database. Rice 2:115–128

    Article  Google Scholar 

  • Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, André I, Duarte J, Gauthier V, Lucante N, Marty A (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:461–465

    Article  Google Scholar 

  • Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  CAS  PubMed  Google Scholar 

  • Huang LL, Zhong KZ, Qi-Bin MA, Hai N, Yang CY (2011) Integrated QTLs map of phosphorus efficiency in soybean by meta-analysis. Chin J Oil Crop Sci 1:25–32

    Google Scholar 

  • Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Kusano H, Kajigaya Y, Ichikawa M, Shimada H (2007) A rice dihydrosphingosine C4 hydroxylase (DSH1) gene, which is abundantly expressed in the stigmas, vascular cells and apical meristem, may be involved in fertility. Plant Cell Physiol 48:1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genom 10:276

    Article  Google Scholar 

  • Korstanje R, Paigen B (2002) From QTL to gene: the harvest begins. Nat Genet 31:235–236

    Article  CAS  PubMed  Google Scholar 

  • Krupovič M, Cvirkaitė-Krupovič V, Bamford DH (2008) Identification and functional analysis of the Rz/Rz1 -like accessory lysis genes in the membrane-containing bacteriophage PRD1. Mol Microbiol 68:492–503

    Article  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Ribaut J, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011a) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9:1002–1013

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011b) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang L, Wang J (2012) Estimation of statistical power and false discovery rate of QTL mapping methods through computer simulation. Chin Sci Bull 57:2701–2710

    Article  Google Scholar 

  • Li WT, Liu CJ, Liu YX, Pu ZE, Dai SF, Wang JR, Lan XJ, Zheng YL, Wei YM (2013) Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica 189:31–49

    Article  CAS  Google Scholar 

  • Li L, Li Y, Song S, Deng H, Li N, Fu X, Chen G, Yuan L (2015) An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta 241:157–166

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Long Y (2008) Challenges for QTL analysis in crops. ICSC 4:130

    Google Scholar 

  • Miles C, Wayne M (2008) Quantitative trait locus (QTL) analysis. Nature Educ 1:208

    Google Scholar 

  • Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung CW, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S (2009) Gramene QTL database: development, content and applications. Database: J Biol Databases Curation 1:204–219

    Google Scholar 

  • Nomura T, Bishop GJ (2006) Cytochrome P450 s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5:421–432

    Article  CAS  Google Scholar 

  • Park S, Moon JC, Park YC, Kim JH, Kim DS, Jang CS (2014) Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. J Plant Physiol 171:1645–1653

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Piao R, Jiang W, Ham TH, Choi MS, Qiao Y, Chu SH, Park JH, Woo MO, Jin Z, An G, Lee J, Koh HJ (2009) Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet 119:1497–1506

    Article  CAS  PubMed  Google Scholar 

  • Qi ZM, Sun YN, Wu Q, Liu CY, Hu GH, Chen QS (2011) A meta-analysis of seed protein concentration QTL in soybean. Can J Plant Sci 91:221–230

    Article  CAS  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166:1634–1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren D, Li Y, Wang Z, Xu F, Guo S, Zhao F, Sang X, Ling Y, He G (2012) Identification and gene mapping of a multi-floret spikelet 1 (mfs1) mutant associated with spikelet development in rice. J Integr Agr 11:1574–1579

    Article  CAS  Google Scholar 

  • Shinozuka H, Cogan N, Spangenberg G, Forster JW (2012) Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genet 13:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Song S, Dai X, Zhang WH (2012) A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. J Exp Bot 63:5559–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28:2082–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BM, Sarla N (2011) Meta-analysis of yield QTLs derived from inter-specific crosses of rice reveals consensus regions and candidate genes. Plant Mol Biol Rep 29:663–680

    Article  Google Scholar 

  • Swamy BM, Vikram P, Dixit S, Ahmed HU, Kumar A (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 12:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang CJ, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truntzler M, Barriere Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L (2010) Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet 121:1465–1482

    Article  CAS  PubMed  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:1–16

    Article  Google Scholar 

  • Waller F, Furuya M, Nick P (2002) OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol 50:415–425

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q (2014) Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Phys Lett B 164:735–747

    CAS  Google Scholar 

  • Wu XL, Hu ZL (2012) Meta-analysis of QTL mapping experiments. Methods Mol Biol 871:145–171

    Article  CAS  PubMed  Google Scholar 

  • Xing YZ, Zhang QF (2010) Genetic and molecular bases of rice yield. Ann Rev Plant Biol 61:421–442

    Article  CAS  Google Scholar 

  • Yaish MW, Elkereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeba N, Isbat M, Kwon N, Lee MO, Kim SR, Hong CB (2009) Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta 229:861–871

    Article  CAS  PubMed  Google Scholar 

  • Zhang HW, Uddin MS, Zou C, Xie CX, Xu YB, Li WX (2014) Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. J Integr Plant Biol 56:262–270

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3:420–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. J Anesth 48:687–698

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kunshen Wu for his critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Chen or Wuming Xiao.

Ethics declarations

Funding

This work was supported by the Science and Technology Planning Project of Guangdong Province, China (2015A020209142), Chinese Ministry of Agriculture (948 plan) (Grant No. 2013-Z67) and Research of Collaborative Innovation Projects, Science and Technology Project of Guangzhou (2014J4500030).

Conflicts of interest

All authors have no conflicts of interest to declare.

Ethical standards

This article does not describe any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by B. Yang.

Y. Wu and M. Huang are contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Huang, M., Tao, X. et al. Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Mol Genet Genomics 291, 1927–1940 (2016). https://doi.org/10.1007/s00438-016-1227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1227-7

Keywords

Navigation