Skip to main content

Advertisement

Log in

Anticipation in hereditary disease: the history of a biomedical concept

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In the mid-nineteenth century, it was commonly believed that hereditary disease struck at the same time in succeeding generations, except for those cases in which it appeared at an earlier age. This exception to the rule was the precursor for the concept of anticipation in hereditary disease, a pattern of inheritance where a hereditary illness strikes earlier and often more severely in succeeding generations. Anticipation underwent cycles of acceptance and rejection over the course of the twentieth century and the ways in which this concept was received reveal complex interactions between science, medicine, and society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adie WJ, Greenfield JG (1923) Dystrophia myotonica (myotonia atrophica). Brain 46(1):73–127

    Article  Google Scholar 

  • Aslanidis C, Jansen G, Amemiya C, Shutler G, Mahadevan M, Tsilfidis C, Chen C, Alleman J, Wormskamp NG, Vooijs M et al (1992) Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature 355(6360):548–551

    Article  PubMed  CAS  Google Scholar 

  • Baur E, Fischer E, Lenz F (1923) Grundriss der menschlichen Erblichkeitslehre und Rassenhygiene. J. F. Lehmann, München

    Google Scholar 

  • Bell J (1947) The treasury of human inheritance. vol. 4, nervous diseases and muscular dystrophies, part 5: dystrophia myotonica and allied diseases with clinical notes by J. Purdon Martin. Cambridge University Press, Cambridge

    Google Scholar 

  • Boehnke M, Conneally PM, Lange K (1983) Two models for a maternal factor in the inheritance of Huntington disease. Am J Hum Genet 35(5):845–860

    PubMed  CAS  Google Scholar 

  • Bowler PJ (2003) Evolution: the history of an idea, 3rd edn. University of California Press, Berkeley

    Google Scholar 

  • Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68(4):799–808

    Article  PubMed  CAS  Google Scholar 

  • Bundey S, Carter CO (1972) Genetic heterogeneity for dystrophia myotonica. J Med Genet 9(3):311–315

    Article  PubMed  CAS  Google Scholar 

  • Buxton J, Shelbourne P, Davies J, Jones C, Van Tongeren T, Aslanidis C, de Jong P, Jansen G, Anvret M, Riley B et al (1992) Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355(6360):547–548

    Article  PubMed  CAS  Google Scholar 

  • Carlson EA (2001) The unfit: a history of a bad idea. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Caughey JE, Barclay J (1954) Dystrophia myotonica and the occurrence of congenital physical defect in affected families. Australas Ann Med 3(3):165–170

    PubMed  CAS  Google Scholar 

  • Davenport CB (1915) Huntington’s chorea in relation to heredity and eugenics. Proc Natl Acad Sci USA 1(5):283–285

    Article  PubMed  CAS  Google Scholar 

  • Dowbiggin IR (1985) Degeneration and hereditarianism in French mental medicine 1840–90: psychiatric theory as ideological adaptation. In: Bynum WF, Porter R, Shepherd M (eds) The anatomy of madness: essays in the history of psychiatry, vol 1: people and ideas. Tavistock Publications, London, pp 188–232

    Google Scholar 

  • Editor (1931) Notes of the quarter. Eugen Rev 22(4):235–238

    Google Scholar 

  • Entres JL (1921) Zur Klinik und Vererbung der Huntingtonschen Chorea. Julius Springer, Berlin

    Google Scholar 

  • Erickson RP (1985) Chromosomal imprinting and the parent transmission specific variation in expressivity of Huntington disease. Am J Hum Genet 37(4):827–829

    PubMed  CAS  Google Scholar 

  • Franceschetti A, Klein D (1946) Über einen Stammbaum von myotonischer Dystrophie mit Anteposition und Potenzierung. Arch Julius Klaus Stift Vererbungsforsch Sozialanthropol Rassenhyg 21(3–4):315–322

    PubMed  CAS  Google Scholar 

  • Friedman JE (2008) Coming full circle: the development, rise fall and return of the concept of anticipation in hereditary disease. Ph.D. Thesis, University of Victoria, Victoria

  • Froster-Iskenius U, Schulze A, Schwinger E (1984) Transmission of the marker X syndrome trait by unaffected males: conclusions from studies of large families. Hum Genet 67(4):419–427

    Article  PubMed  CAS  Google Scholar 

  • Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, Verkerk AJ, Holden JJ, Fenwick RG Jr, Warren ST et al (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67(6):1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255(5049):1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt R (1938) ‘Progressive heredity’ and ‘anticipation’: the possibility of a genetic explanation of certain odd hereditary phenomena observed in man. J Hered 29(4):140–142

    Google Scholar 

  • Harley HG, Brook JD, Rundle SA, Crow S, Reardon W, Buckler AJ, Harper PS, Housman DE, Shaw DJ (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355(6360):545–546

    Article  PubMed  CAS  Google Scholar 

  • Harper PS (1975) Congenital myotonic dystrophy in Britain. II. genetic basis. Arch Dis Child 50(7):514–521

    Article  PubMed  CAS  Google Scholar 

  • Harper PS (1989) Myotonic dystrophy, 2nd edn. W. B. Saunders, London

    Google Scholar 

  • Harper PS (1990) Myotonic dystrophy and related disorders. In: Emery AEH, Rimoin DL (eds) Principles and practice of medical genetics, vol 1, 2nd edn. Churchill Livingstone, Edinburgh, pp 579–597

    Google Scholar 

  • Harper PS (ed) (1991) Huntington’s disease. W. B. Saunders, London

    Google Scholar 

  • Harper PS (2008) A short history of medical genetics. Oxford University Press, Oxford

    Google Scholar 

  • Harper PS, Dyken PR (1972) Early onset dystrophia myotonica—evidence supporting a maternal environmental factor. Lancet 300(7767):53–55

    Article  Google Scholar 

  • Harper PS, Harley HG, Reardon W, Shaw DJ (1992) Anticipation in myotonic dystrophy: new light on an old problem. Am J Hum Genet 51(1):10–16

    PubMed  CAS  Google Scholar 

  • Harris H (1973) Lionel Sharples Penrose, 1898–1972. Biogr Mem Fellows R Soc 19:521–561

    Article  PubMed  CAS  Google Scholar 

  • Heron D (1914) An examination of some recent studies of the inheritance factor in insanity. Biometrika 10:356–383

    Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238(4824):163–170

    Article  PubMed  CAS  Google Scholar 

  • Höweler CJ (1986) A clinical and genetic study in myotonic dystrophy. MD Thesis, Erasmus University Rotterdam, Rotterdam

  • Höweler CJ, Busch HF, Geraedts JP, Niermeijer MF, Staal A (1989) Anticipation in myotonic dystrophy: fact or fiction? Brain 112(3):779–797

    Article  PubMed  Google Scholar 

  • Israel MH (1987) Autosomal suppressor gene for fragile-X: an hypothesis. Am J Med Genet 26(1):19–31

    Article  PubMed  CAS  Google Scholar 

  • Kay LE (1993) The molecular vision of life: Caltech, the Rockefeller Foundation, and the rise of the new biology. Oxford University Press, New York

    Google Scholar 

  • Kevles DJ (1995) In the name of eugenics: genetics and the uses of human heredity. Harvard University Press, Cambridge

    Google Scholar 

  • Klein D (1954) Manifestations progressives et extensives d’une dystrophie myotonique dans une famille argovienne. Confin Neurol 14(2–3):169–175

    Article  PubMed  CAS  Google Scholar 

  • Kolata G (1992) Geneticists find defect worsens over generations. New York Times, February 6, 1992, p A1

  • Krementsov NL (1997) Stalinist science. Princeton University Press, Princeton

    Google Scholar 

  • Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252(5013):1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Krige J (2006) American hegemony and the postwar reconstruction of science in Europe. MIT Press, Cambridge

    Google Scholar 

  • Kwakami R (1926) Beiträge zur Vererbung der familiären Sehnervenatrophie. Albrecht Von Graefes Arch Ophthalmol 116:568–595

    Article  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352(6330):77–79

    Article  PubMed  CAS  Google Scholar 

  • Laird CD (1987) Proposed mechanism of inheritance and expression of the human fragile-X syndrome of mental retardation. Genetics 117(3):587–599

    PubMed  CAS  Google Scholar 

  • Laird CD (1990) Proposed genetic basis of Huntington’s disease. Trends Genet 6(8):242–247

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter DH, Ledbetter SA, Nussbaum RL (1986) Implications of fragile X expression in normal males for the nature of the mutation. Nature 324(6093):161–163

    Article  PubMed  CAS  Google Scholar 

  • Lloyd GER (ed) (1983) Hippocratic writings. Penguin Books, London

    Google Scholar 

  • Lombardo PA (2008) Three generations, no imbeciles: eugenics, the Supreme Court, and Buck v. Bell. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Lopez-Beltran C (1994) Forging heredity: from metaphor to cause, a reification story. Stud Hist Philos Sci 25(2):211–235

    Article  PubMed  CAS  Google Scholar 

  • Lubs HA (1969) A marker X chromosome. Am J Hum Genet 21(3):231–244

    PubMed  CAS  Google Scholar 

  • Lucas P (1847–1850) Traité philosophique et physiologique de l’hérédité naturelle dans les états de santé et de maladie du système nerveux. J. B. Baillière, Paris

  • Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcelo J, O’Hoy K et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255(5049):1253–1255

    Article  PubMed  CAS  Google Scholar 

  • Martin JP, Bell J (1943) A pedigree of mental defect showing sex-linkage. J Neurol Psychiatry 6:154–157

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar PMH (1992) Eugenics, human genetics, and human failings: the Eugenics Society, its sources and its critics in Britain. Routledge, London

    Google Scholar 

  • McLaren A (1990) Our own master race: eugenics in Canada, 1885–1945. Oxford University Press, Toronto

    Google Scholar 

  • McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11(11):786–799

    Article  PubMed  CAS  Google Scholar 

  • Merritt A, Conneally DPM, Rahman NF, Drew AL (1969) Juvenile Huntington’s chorea. In: Barbeau A, Brunette J-R (eds) Progress in neurogenetics. Proceedings of the second international congress of neuro-genetics and neuro-ophthalmology of the World Federation of Neurology, vol 1. Excerpta Medica Foundation, Amsterdam, pp 645–650

    Google Scholar 

  • Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447(7147):932–940

    Article  PubMed  CAS  Google Scholar 

  • Morel BA (1857) Traité des dégénérescences physiques, intellectuelles et morales de l’espèce humaine et des causes qui produisent ces variétés maladives. J. B. Baillière, Paris

    Google Scholar 

  • Morel BA (1860) Traité des maladies mentales. Victor Masson, Paris

    Google Scholar 

  • Mott FW (1910) The Huxley lecture on hereditary aspects of nervous and mental diseases. Lancet 176(4545):1057–1064

    Article  Google Scholar 

  • Mott FW (1911a) Heredity and insanity. Eugen Rev 2(4):257–281

    PubMed  CAS  Google Scholar 

  • Mott FW (1911b) A lecture on heredity and insanity. Lancet 177(4576):1251–1259

    Article  Google Scholar 

  • Mott FW (1912) Heredity and eugenics in relation to insanity. In: Problems in eugenics: papers communicated to the first international eugenics congress. Eugenics Society, London, pp 400–428

    Google Scholar 

  • Muller HJ (1949) Progress and prospects in human genetics. Am J Hum Genet 1(1):1–18

    PubMed  CAS  Google Scholar 

  • Myers RH, Goldman D, Bird ED, Sax DS, Merril CR, Schoenfeld M, Wolf PA (1983) Maternal transmission of Huntington’s disease. Lancet 321(8318):208–210

    Article  Google Scholar 

  • Nettleship E (1905) On heredity in the various forms of cataract. Roy Lond Ophthal Hosp Rep 16:179–246

    Google Scholar 

  • Nettleship E (1909) On some hereditary diseases of the eye. Being the Bowman lecture delivered on Thursday, June 10th, 1909. Trans Ophthalmol Soc UK 29:52–198

    Google Scholar 

  • Nettleship E (1910) Some points on the heredity of disease. St Thos Hosp Gaz 20:37–65

    Google Scholar 

  • Nordau MS (1968) Degeneration. Translated from the second edition of the German work (1895) with an introduction by George L. Mosse. Howard Fertig, New York

    Google Scholar 

  • Nussbaum RL, Airhart SD, Ledbetter DH (1986) Recombination and amplification of pyrimidine-rich sequences may be responsible for initiation and progression of the Xq27 fragile site: an hypothesis. Am J Med Genet 23(1–2):715–721

    Article  PubMed  CAS  Google Scholar 

  • Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas M, Mandel J (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252(5009):1097–1102

    Article  CAS  Google Scholar 

  • Opitz JM (1986) On the gates of hell and a most unusual gene. Am J Med Genet 23(1–2):1–10

    PubMed  CAS  Google Scholar 

  • Paterson AS (1932) ‘Anticipation’ in mental disease. Eugen Rev 24(3):191–193

    PubMed  CAS  Google Scholar 

  • Paul DB (1998) Eugenic origins of medical genetics. In: The politics of heredity: essays on eugenics, biomedicine, and the nature-nurture debate. State University of New York Press, Albany, pp 133–156

    Google Scholar 

  • Pearson K (1912) On an apparent fallacy in the statistical treatment of “antedating” in the inheritance of pathological conditions. Nature 90(2247):334–335

    Article  Google Scholar 

  • Pearson K (1931) On the inheritance of mental disease. Ann Eugen 4:362–380

    Article  Google Scholar 

  • Pembrey ME, Winter RM, Davies KE (1985) A premutation that generates a defect at crossing over explains the inheritance of fragile X mental retardation. Am J Med Genet 21(4):709–717

    Article  PubMed  CAS  Google Scholar 

  • Penagarikano O, Mulle JG, Warren ST (2007) The pathophysiology of fragile X syndrome. Annu Rev Genomics Hum Genet 8:109–129

    Article  PubMed  CAS  Google Scholar 

  • Penrose LS (1933) The influence of heredity on disease. H. K. Lewis & Co. Ltd, London

    Google Scholar 

  • Penrose LS (1936) Autosomal mutation and modification in man, with special reference to mental defect. Ann Eugen 7:1–16

    Article  Google Scholar 

  • Penrose LS (1946) Social aspects of psychiatry; the importance of statistics. J Ment Sci 92(389):713–718

    PubMed  CAS  Google Scholar 

  • Penrose LS (1948) The problem of anticipation in pedigrees of dystrophia myotonica. Ann Eugen 14(2):125–132

    PubMed  CAS  Google Scholar 

  • Pick D (1989) Faces of degeneration: a European disorder, c. 1848–1918. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pringle P (2008) The murder of Nikolai Vavilov: the story of Stalin’s persecution of one of the great scientists of the twentieth century. Simon & Schuster, New York

    Google Scholar 

  • Reik W (1988) Genomic imprinting: a possible mechanism for the parental origin effect in Huntington’s chorea. J Med Genet 25(12):805–808

    Article  PubMed  CAS  Google Scholar 

  • Richards BW, Sylvester PE, Brooker C (1981) Fragile X-linked mental retardation: the Martin–Bell syndrome. J Ment Defic Res 25(4):253–256

    PubMed  Google Scholar 

  • Ridley RM, Frith CD, Crow TJ, Conneally PM (1988) Anticipation in Huntington’s disease is inherited through the male line but may originate in the female. J Med Genet 25(9):589–595

    Article  PubMed  CAS  Google Scholar 

  • Rosner F (1998) Judaism, genetic screening and genetic therapy. Mt Sinai J Med 65(5–6):406–413

    PubMed  CAS  Google Scholar 

  • Rüdin E (1916) Studien über Vererbung und Entstehung geistiger Störungen, I: Zur Vererbung und Neuentstehung der Dementia praecox. Julius Springer, Berlin

    Google Scholar 

  • Rüdin E (1923) Über Vererbung geistiger Störungen. Z Gesamte Neurol Psych 81:459–496

    Article  Google Scholar 

  • Rushton AR (2000) Nettleship, Pearson and Bateson: the biometric-Mendelian debate in a medical context. J Hist Med Allied Sci 55(2):134–157

    Article  PubMed  CAS  Google Scholar 

  • Sapp J (1987) Beyond the gene: cytoplasmic inheritance and the struggle for authority in genetics. Oxford University Press, New York

    Google Scholar 

  • Sherman SL, Morton NE, Jacobs PA, Turner G (1984) The marker (X) syndrome: a cytogenetic and genetic analysis. Ann Hum Genet 48(1):21–37

    Article  PubMed  CAS  Google Scholar 

  • Sherman SL, Jacobs PA, Morton NE, Froster-Iskenius U, Howard-Peebles PN, Nielsen KB, Partington MW, Sutherland GR, Turner G, Watson M (1985) Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Hum Genet 69(4):289–299

    Article  PubMed  CAS  Google Scholar 

  • Sherrill JW (1921) The diagnosis of latent incipient diabetes. JAMA 77(23):1779–1785

    Google Scholar 

  • Soloway RA (1995) Demography and degeneration: eugenics and the declining birthrate in twentieth-century Britain. University of North Carolina Press, Chapel Hill

    Google Scholar 

  • Steinbach P (1986) Mental impairment in Martin-Bell syndrome is probably determined by interaction of several genes: simple explanation of phenotypic differences between unaffected and affected males with the same X chromosome. Hum Genet 72(3):248–252

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GR, Haan EA, Kremer E, Lynch M, Pritchard M, Yu S, Richards RI (1991) Hereditary unstable DNA: a new explanation for some old genetic questions? Lancet 338(8762):289–292

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983

    Article  Google Scholar 

  • Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65(5):905–914

    Article  PubMed  CAS  Google Scholar 

  • Waller JC (2001) Ideas of heredity, reproduction and eugenics in Britain, 1800–1875. Stud Hist Phil Biol Biomed Sci 32(3):457–489

    Google Scholar 

  • Waller JC (2002) ‘The illusion of an explanation’: the concept of hereditary disease, 1770–1870. J Hist Med Allied Sci 57(4):410–448

    Article  PubMed  Google Scholar 

  • Warren ST, Zhang F, Licameli GR, Peters JF (1987) The fragile X site in somatic cell hybrids: an approach for molecular cloning of fragile sites. Science 237(4813):420–423

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Pritchard M, Kremer E, Lynch M, Nancarrow J, Baker E, Holman K, Mulley J, Warren S, Schlessinger D, Et A (1991) Fragile X genotype characterized by an unstable region of DNA. Science 252(5009):1179–1181

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper has its origins in a talk that was given at the Fourth International Workshop on Genetics, Medicine and History 11–12 June 2010, Gothenburg Sweden while I was a postdoctoral fellow at the Max Planck Institute of the History of Science. I would like to thank the Writing Group at the Office of History, National Institutes of Health, for their feedback on an earlier draft of this article. The comments and suggestions made by Dr. Peter Harper and the anonymous reviewers at Human Genetics were also very much appreciated. I would like to thank the Royal Society of Medicine, the Wellcome Library, London, University College London Library Special Collections, and Chris Höweler for providing permissions for the illustrations which appear with the article. Funding for my research has been provided by the National Institutes of Health, the Max Planck Institute for the History of Science, the Rockefeller Archive Center, and the Social Sciences and Humanities Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith E. Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, J.E. Anticipation in hereditary disease: the history of a biomedical concept. Hum Genet 130, 705–714 (2011). https://doi.org/10.1007/s00439-011-1022-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1022-9

Keywords

Navigation