Skip to main content

Advertisement

Log in

OpenMendel: a cooperative programming project for statistical genetics

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Statistical methods for genome-wide association studies (GWAS) continue to improve. However, the increasing volume and variety of genetic and genomic data make computational speed and ease of data manipulation mandatory in future software. In our view, a collaborative effort of statistical geneticists is required to develop open source software targeted to genetic epidemiology. Our attempt to meet this need is called the OpenMendel project (https://openmendel.github.io). It aims to (1) enable interactive and reproducible analyses with informative intermediate results, (2) scale to big data analytics, (3) embrace parallel and distributed computing, (4) adapt to rapid hardware evolution, (5) allow cloud computing, (6) allow integration of varied genetic data types, and (7) foster easy communication between clinicians, geneticists, statisticians, and computer scientists. This article reviews and makes recommendations to the genetic epidemiology community in the context of the OpenMendel project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aird I, Bentall HH, Roberts JF (1953) Relationship between cancer of stomach and the abo blood groups. Br Med J 1(4814):799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664. https://doi.org/10.1101/gr.094052.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin N, Van Duijn CM, Aulchenko YS (2007) A genomic background based method for association analysis in related individuals. PLoS One 2(12):e1274

    PubMed  PubMed Central  Google Scholar 

  • Astle W, Balding DJ et al (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24(4):451–471

    Google Scholar 

  • Bahmani S, Raj B, Boufounos PT (2013) Greedy sparsity-constrained optimization. J Mach Learn Res 14(Mar):807–841

    Google Scholar 

  • Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing. SIAM Rev 59(1):65–98. https://doi.org/10.1137/141000671

    Article  Google Scholar 

  • Bickerstaffe A, Ranaweera T, Endersby T, Ellis C, Maddumarachchi S, Gooden GE, White P, Moses EK, Hewitt AW, Hopper JL (2017) The Ark: a customizable web-based data management tool for health and medical research. Bioinformatics 33(4):624–626. https://doi.org/10.1093/bioinformatics/btw675

    Article  CAS  PubMed  Google Scholar 

  • Blumensath T, Davies ME (2008) Iterative thresholding for sparse approximations. J Fourier Anal Appl 14(5–6):629–654

    Google Scholar 

  • Blumensath T, Davies ME (2009) Iterative hard thresholding for compressed sensing. Appl Comput Harmon Anal 27(3):265–274

    Google Scholar 

  • Boerwinkle E, Sing C (1987) The use of measured genotype information in the analysis of quantitative phenotypes in man. Ann Hum Genet 51(3):211–226

    CAS  PubMed  Google Scholar 

  • Brody JA, Morrison AC, Bis JC, O’Connell JR, Brown MR, Huffman JE, Ames DC, Carroll A, Conomos MP, Gabriel S et al (2017) Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology. Nat Genet 49(11):1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bühlmann P, Van De Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media, New York

    Google Scholar 

  • Burgess S, Thompson SG (2015) Mendelian randomization: methods for using genetic variants in causal estimation. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Candès EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772. https://doi.org/10.1007/s10208-009-9045-5

    Article  Google Scholar 

  • Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86(1):6–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HYK, Chen R, Miriami E, Karczewski KJ, Hariharan M, Dewey FE, Cheng Y, Clark MJ, Im H, Habegger L, Balasubramanian S, O’Huallachain M, Dudley JT, Hillenmeyer S, Haraksingh R, Sharon D, Euskirchen G, Lacroute P, Bettinger K, Boyle AP, Kasowski M, Grubert F, Seki S, Garcia M, Whirl-Carrillo M, Gallardo M, Blasco MA, Greenberg PL, Snyder P, Klein TE, Altman RB, Butte AJ, Ashley EA, Gerstein M, Nadeau KC, Tang H, Snyder M (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148(6):1293–1307. https://doi.org/10.1016/j.cell.2012.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WM, Abecasis GR (2007) Family-based association tests for genomewide association scans. Am J Hum Genet 81(5):913–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chi EC, Zhou H, Chen GK, Del Vecchyo DO, Lange K (2013) Genotype imputation via matrix completion. Genome Res 23(3):509–518. https://doi.org/10.1101/gr.145821.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu Cy, Jung J, Chen W, Weeks DE, Ren H, Boehnke M, Amos CI, Liu A, Mills JL, Ting Lee Ml, Xiong M, Fan R (2016) Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models. European Journal Of Human Genetics 25:350 EP. https://doi.org/10.1038/ejhg.2016.170

    PubMed  PubMed Central  Google Scholar 

  • Clark MM, Blangero J, Dyer TD, Sobel EM, Sinsheimer JS (2016) The quantitative-MFG test: a linear mixed effect model to detect maternal-offspring gene interactions. Ann Hum Genet 80(1):63–80. https://doi.org/10.1111/ahg.12137

    Article  CAS  PubMed  Google Scholar 

  • Claster A (2017) Julia joins petaflop club. URL https://juliacomputing.com/press/2017/09/12/julia-joins-petaflop-club.html

  • Conomos MP, Reiner AP, Weir BS, Thornton TA (2016) Model-free estimation of recent genetic relatedness. Am J Hum Genet 98(1):127–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10(3):184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Day-Williams AG, Blangero J, Dyer TD, Lange K, Sobel EM (2011) Linkage analysis without defined pedigrees. Genet Epidemiol 35(5):360–370. https://doi.org/10.1002/gepi.20584

    Article  PubMed  PubMed Central  Google Scholar 

  • Falconer D, Mackay T (1996) C. 1996. Introduction to Quantitative Genetics, pp 82–86

  • Fan R, Wang Y, Chiu Cy, Chen W, Ren H, Li Y, Boehnke M, Amos CI, Moore JH, Xiong M (2016) Meta-analysis of complex diseases at gene level with generalized functional linear models. Genetics 202(2):457–470. https://doi.org/10.1534/genetics.115.180869. http://www.genetics.org/content/202/2/457

    PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4):507–521

    Google Scholar 

  • Fisher RA (1921) On the probable error of a coefficient of correlation deduced from a small sample. Metron 1:3–32

    Google Scholar 

  • Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, Whitbourne S, Deen J, Shannon C, Humphries D, Guarino P, Aslan M, Anderson D, LaFleur R, Hammond T, Schaa K, Moser J, Huang G, Muralidhar S, Przygodzki R, O’Leary TJ (2016) Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J Clin Epidemiol 70:214–223. https://doi.org/10.1016/j.jclinepi.2015.09.016

    Article  PubMed  Google Scholar 

  • Hall MA, Wallace J, Lucas A, Kim D, Basile AO, Verma SS, McCarty CA, Brilliant MH, Peissig PL, Kitchner TE et al (2017) Plato software provides analytic framework for investigating complexity beyond genome-wide association studies. Nat Commun 8(1):1167

    PubMed  PubMed Central  Google Scholar 

  • Hastie T, Mazumder R, Lee JD, Zadeh R (2015) Matrix completion and low-rank SVD via fast alternating least squares. J. Mach. Learn. Res. 16(1):3367–3402, http://dl.acm.org/citation.cfm?id=2789272.2912106

  • Helgason A, Yngvadóttir B, Hrafnkelsson B, Gulcher J, Stefánsson K (2005) An Icelandic example of the impact of population structure on association studies. Nat Genet 37(1):90

    CAS  PubMed  Google Scholar 

  • Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44(8):955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5(6):e1000,529. https://doi.org/10.1371/journal.pgen.1000529

    Article  CAS  Google Scholar 

  • Jacquard A (1974) The genetic structure of populations, vol 5. Springer Science & Business Media, New York

    Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi ES, Suchard MA, Liu Z, Li G (2018) Scalable sparse Cox regression for large-scale survival data via broken adaptive ridge. arXiv:1712.00561 (in preparation)

  • Keys KL, Chen GK, Lange K (2017) Iterative hard thresholding for model selection in genome-wide association studies. Genet Epidemiol 41(8):756–768

    PubMed  PubMed Central  Google Scholar 

  • Khanna R, Kyrillidis A (2018) Iht dies hard: Provable accelerated iterative hard thresholding. In: International Conference on Artificial Intelligence and Statistics, pp 188–198

  • Kilpinen H, Barrett JC (2013) How next-generation sequencing is transforming complex disease genetics. Trends Genet 29(1):23–30

    CAS  PubMed  Google Scholar 

  • Kim J, Bai Y, Pan W (2015) An adaptive association test for multiple phenotypes with GWAS summary statistics. Genet Epidemiol 39(8):651–663

    PubMed  PubMed Central  Google Scholar 

  • Knowler WC, Williams R, Pettitt D, Steinberg AG (1988) Gm3; 5, 13, 14 and type 2 diabetes mellitus: an association in american indians with genetic admixture. Am J Hum Genet 43(4):520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange K (2003) Mathematical and statistical methods for genetic analysis. Springer Science & Business Media, New York

    Google Scholar 

  • Lange K (2016) MM Optimization Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9781611974409.ch1

  • Lange K, Papp JC, Sinsheimer JS, Sripracha R, Zhou H, Sobel EM (2013) Mendel: the Swiss army knife of genetic analysis programs. Bioinformatics 29(12):1568–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lange K, Sinsheimer J (1992) Calculation of genetic identity coefficients. Ann Hum Genet 56(4):339–346

    CAS  PubMed  Google Scholar 

  • Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95(1):5–23. https://doi.org/10.1016/j.ajhg.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34(8):816–834. https://doi.org/10.1002/gepi.20533

    Article  PubMed  PubMed Central  Google Scholar 

  • Liberty E, Woolfe F, Martinsson PG, Rokhlin V, Tygert M (2007) Randomized algorithms for the low-rank approximation of matrices. Proc Natl Acad Sci USA 104(51):20167–20172. https://doi.org/10.1073/pnas.0709640104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8(10):833–835

    CAS  PubMed  Google Scholar 

  • Liu Y, Athanasiadis G, Weale ME (2008) A survey of genetic simulation software for population and epidemiological studies. Hum Genom 3(1):79

    Google Scholar 

  • Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B (2017) Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am J Hum Genet 100(3):473–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM (2010) Robust relationship inference in genome-wide association studies. Bioinformatics 26(22):2867–2873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39(7):906–913. https://doi.org/10.1038/ng2088

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies-the next generation. Nat Rev Genet 11(1):31

    CAS  PubMed  Google Scholar 

  • Mittal S, Madigan D, Burd RS, Suchard MA (2014) High-dimensional, massive sample-size Cox proportional hazards regression for survival analysis. Biostatistics 15(2):207–221. https://doi.org/10.1093/biostatistics/kxt043

    Article  PubMed  Google Scholar 

  • Morris AP, Lindgren CM, Zeggini E, Timpson NJ, Frayling TM, Hattersley AT, McCarthy MI (2010) A powerful approach to sub-phenotype analysis in population-based genetic association studies. Gen Epidemiol 34(4):335–343

    Google Scholar 

  • Novembre J, Peter BM (2016) Recent advances in the study of fine-scale population structure in humans. Curr Opin Genet Dev 41:98–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2(12):e190

    PubMed  PubMed Central  Google Scholar 

  • Pickrell WO, Rees MI, Chung SK (2012) Next generation sequencing methodologies-an overview. In: Advances in protein chemistry and structural biology, vol. 89, pp. 1–26. Elsevier

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. https://doi.org/10.1038/ng1847

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranaweera T, Makalic E, Hopper JL, Bickerstaffe A (2018) An open-source, integrated pedigree data management and visualization tool for genetic epidemiology. Int J Epidemiol 47(4):1034–1039. https://doi.org/10.1093/ije/dyy049

    Article  PubMed  Google Scholar 

  • Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73(6):1402–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schäffer AA, Lemire M, Ott J, Lathrop GM, Weeks DE (2011) Coordinated conditional simulation with slink and sup of many markers linked or associated to a trait in large pedigrees. Hum Hered 71(2):126–134

    PubMed  PubMed Central  Google Scholar 

  • Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70(2):425–434

    PubMed  Google Scholar 

  • Shen J, Li P (2017) A tight bound of hard thresholding. J Mach Learn Res 18(1):7650–7691

    Google Scholar 

  • Sobel E, Lange K, OConnell JR, Weeks DE (1996) Haplotyping algorithms. In: Genetic mapping and DNA sequencing, pp. 89–110. Springer

  • Suchard MA, Simpson SE, Zorych I, Ryan P, Madigan D (2013) Massive parallelization of serial inference algorithms for a complex generalized linear model. ACM Transactions on Modeling and Computer Simulation (TOMACS) 23(1):article10:1–17. https://doi.org/10.1145/2414416.2414791

    Google Scholar 

  • Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001,779

    Google Scholar 

  • Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS (2012) Rapid variance components-based method for whole-genome association analysis. Nat Genet 44(10):1166

    CAS  PubMed  Google Scholar 

  • Telenti A, Pierce LCT, Biggs WH, di Iulio J, Wong EHM, Fabani MM, Kirkness EF, Moustafa A, Shah N, Xie C, Brewerton SC, Bulsara N, Garner C, Metzker G, Sandoval E, Perkins BA, Och FJ, Turpaz Y, Venter JC (2016) Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci 113(42):11901–11906. https://doi.org/10.1073/pnas.1613365113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426

    PubMed  Google Scholar 

  • Van Leeuwen EM, Kanterakis A, Deelen P, Kattenberg MV, Abdellaoui A, Hofman A, Schönhuth A, Menelaou A, de Craen AJ, van Schaik BD et al (2015) Population-specific genotype imputations using minimac or impute2. Nat Protocols 10(9):1285

    PubMed  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423

    CAS  PubMed  Google Scholar 

  • Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Sverdlov S, Thompson E (2017) Efficient estimation of realized kinship from SNP genotypes. Genetics 210(2)

  • Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 81(6):1278–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 1(89):82–93

    Google Scholar 

  • Wu TT, Chen YF, Hastie T, Sobel E, Lange K (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25(6):714–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Barber RF, Jain P, Lafferty J (2016) Selective inference for group-sparse linear models. In: Advances in Neural Information Processing Systems, pp 2469–2477

  • Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, Martin NG, Montgomery GW, Weedon MN, Loos RJ et al (2012) Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44(4):369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan X, Miller DJ, Zhang J, Herrington D, Wang Y (2012) An overview of population genetic data simulation. J Comput Biol 19(1):42–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan XT, Li P, Zhang T (2017) Gradient hard thresholding pursuit. J Mach Learn Res 18:166–221

    Google Scholar 

  • Zhou H, Alexander D, Lange K (2011) A quasi-newton acceleration for high-dimensional optimization algorithms. Stat Comput 21(2):261–273

    PubMed  PubMed Central  Google Scholar 

  • Zhou H, Alexander DH, Sehl ME, Sinsheimer JS, Sobel E, Lange K (2011) Penalized regression for genome-wide association screening of sequence data. In: Biocomputing 2011, pp. 106–117. World Scientific

  • Zhou H, Blangero J, Dyer TD, Chan KhK, Lange K, Sobel EM (2017) Fast genome-wide QTL association mapping on pedigree and population data. Genet Epidemiol 41(3):174–186. https://doi.org/10.1002/gepi.21988

    Article  PubMed  Google Scholar 

  • Zhou H, Hu L, Zhou J, Lange K (2018) MM algorithms for variance components models. J Comput Graph Stat Accept. https://doi.org/10.1080/10618600.2018.1529601

    Article  Google Scholar 

  • Zhou H, Sehl ME, Sinsheimer JS, Lange K (2010) Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26(19):2375–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JJ, Hu T, Qiao D, Cho MH, Zhou H (2016) Boosting gene mapping power and efficiency with efficient exact variance component tests of SNP sets. Genetics 204(3):921–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JJ, Sinsheimer JS, Cho MH, Castaldi P, Zhou H (2018) MMVC: An efficient mm algorithm to quantify genetic correlations across large number of phenotypes in giant datasets. manuscript in preparation

  • Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods 11(4):407–409. https://doi.org/10.1038/nmeth.2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Zhang S, Zhao H, Cooper RS (2002) Association mapping, using a mixture model for complex traits. Genet Epidemiol 23(2):181–196

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Zhou, Janet S. Sinsheimer or Kenneth Lange.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

NIH Grants R01-GM53275, R01-HG006139, R01-GM105785, R01-HL135156 and T32-HG002536; NSF grant DMS-1052210; the UCSF Bakar Computational Health Sciences Institute; the UC Berkeley Institute for Data Sciences as part of the Moore-Sloan Data Sciences Environment Initiative; and the 2018 Google Summer of Code.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Sinsheimer, J.S., Bates, D.M. et al. OpenMendel: a cooperative programming project for statistical genetics. Hum Genet 139, 61–71 (2020). https://doi.org/10.1007/s00439-019-02001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-02001-z

Keywords

Navigation