Skip to main content

Advertisement

Log in

Aging of the Metropolis dynamics on the random energy model

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the Metropolis dynamics of the simplest mean-field spin glass model, the random energy model. We show that this dynamics exhibits aging by showing that the properly rescaled time change process between the Metropolis dynamics and a suitably chosen ‘fast’ Markov chain converges in distribution to a stable subordinator. The rescaling might depend on the realization of the environment, but we show that its exponential growth rate is deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.J., Brown, M.: Inequalities for rare events in time-reversible Markov chains. I, Stochastic inequalities (Seattle, WA, 1991). IMS Lecture Notes Monogr. Ser., vol. 22, Inst. Math. Statist., pp. 1–16. Hayward, CA (1992)

  2. Aldous, D.J., Fill, J.A.: Reversible markov chains and random walks on graphs. Unfinished monograph, recompiled 2014. (2002). http://www.stat.berkeley.edu/~aldous/RWG/book.html

  3. Barlow, M.T., Černý, J.: Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Relat. Fields 149(3–4), 639–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barlow, M.T., Deuschel, J.-D.: Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38(1), 234–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Arous, G., Bovier, A., Černý, J.: Universality of the REM for dynamics of mean-field spin glasses. Commun. Math. Phys. 282(3), 663–695 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Arous, G., Bovier, A., Gayrard, V.: Aging in the random energy model. Phys. Rev. Lett. 88(8), 087201 (2002)

    Article  Google Scholar 

  7. Ben Arous, G., Bovier, A., Gayrard, V.: Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Commun. Math. Phys. 235(3), 379–425 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Arous, G., Bovier, A., Gayrard, V.: Glauber dynamics of the random energy model. II. Aging below the critical temperature. Commun. Math. Phys. 236(1), 1–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben Arous, G., Černý, J.: The arcsine law as a universal aging scheme for trap models. Commun. Pure Appl. Math. 61(3), 289–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben Arous, G., Gün, O.: Universality and extremal aging for dynamics of spin glasses on subexponential time scales. Commun. Pure Appl. Math. 65(1), 77–127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouchaud, J.P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I Fr. 2(9), 1705–1713 (1992)

    Article  Google Scholar 

  12. Bouchaud, J.-P., Cugliandolo, L.F., Kurchan, J., Mézard, M.: Out of Equilibrium Dynamics in Spin-Glasses and Other Glassy Systems. Spin Glasses and Random Fields. World Scientific, Singapore (1997)

    Book  Google Scholar 

  13. Bouchaud, J.P., Dean, D.S.: Aging on Parisi’s tree. J. Phys. I Fr. 5(3), 265–286 (1995)

    Article  Google Scholar 

  14. Černý, J.: On two-dimensional random walk among heavy-tailed conductances. Electron. J. Probab. 16, 293–313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Černý, J., Gayrard, V.: Hitting time of large subsets of the hypercube. Random Struct. Algorithms 33(2), 252–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Černý, J., Teixeira, A., Windisch, D.: Giant vacant component left by a random walk in a random \(d\)-regular graph. Ann. Inst. Henri Poincaré Probab. Stat. 47(4), 929–968 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Černý, J., Wassmer, T.: Randomly trapped random walks on \(\mathbb{Z}^d\). Stoch. Process. Appl. 125(3), 1032–1057 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chamberlin, R.V.: Time decay of the thermoremanent magnetization in spin-glasses as a function of the time spent in the field-cooled state. Phys. Rev. B 30(9), 5393–5395 (1984)

    Article  Google Scholar 

  19. Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45(2), 79–82 (1980)

    Article  MathSciNet  Google Scholar 

  20. Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3) 24(5), 2613–2626 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1(1), 36–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fontes, L.R.G., Mathieu, P.: On the dynamics of trap models in \(\mathbb{Z}^d\). Proc. Lond. Math. Soc. (3) 108(6), 1562–1592 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fontes, L.R.G., Isopi, M., Kohayakawa, Y., Picco, P.: The spectral gap of the REM under Metropolis dynamics. Ann. Appl. Probab. 8(3), 917–943 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gayrard, V.: Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM (2010). arXiv:1008.3849

  25. Gayrard, V.: Convergence of clock process in random environments and aging in Bouchaud’s asymmetric trap model on the complete graph. Electron. J. Probab. 17(58), 22 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Gayrard, V.: Convergence of clock processes and aging in Metropolis dynamics of a truncated REM. To appear in Annales Henri Poincaré (2014). arXiv:1402.0388

  27. Gayrard, V., Švejda, A.: Convergence of clock processes on infinite graphs and aging in Bouchaud’s asymmetric trap model on \(\mathbb{Z}^d\). ALEA Lat. Am. J. Probab. Math. Stat. 11(1), 781–822 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Hastad, J., Leighton, T., Newman, M.: Reconfiguring a hypercube in the presence of faults. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’87, ACM, pp. 274–284 (1987)

  29. Lundgren, L., Svedlindh, P., Nordblad, P., Beckman, O.: Dynamics of the relaxation-time spectrum in a CuMn spin-glass. Phys. Rev. Lett. 51(10), 911–914 (1983)

    Article  Google Scholar 

  30. Lyons, R., Peres, Y.: Probability on trees and networks. Cambridge University Press. Current version available at http://mypage.iu.edu/~rdlyons/ (2014) (in preparation)

  31. Mathieu, P., Mourrat, J.-C.: Aging of asymmetric dynamics on the random energy model. Probab. Theory Relat. Fields 161(1–2), 351–427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mourrat, J.-C.: Scaling limit of the random walk among random traps on \(\mathbb{Z}^d\). Ann. Inst. Henri Poincaré Probab. Stat. 47(3), 813–849 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Whitt, W.: Stochastic-Process Limits. Springer Series in Operations Research. An introduction to stochastic-process limits and their application to queues. Springer-Verlag, New York (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Černý.

Appendix: Extremal characterization of mean hitting time

Appendix: Extremal characterization of mean hitting time

In this appendix we give the proof of the formula (4.1) which gives a lower bound on the mean hitting time of a set when starting from stationarity. This formula is a continuous-time version of (a half of) Proposition 3.2 from [16]. This proposition, as well as the underlying result [2, Proposition 3.41], is stated for a continuous-time Markov chain whose waiting times are mean-one exponential random variables. We were not able to find analogous statements for general continuous-time Markov chains in the literature, so we provide short proofs here, for the sake of completeness.

We start by introducing some notation. Let Y be a reversible continuous-time Markov chain on a finite state space \(\mathcal {S}\) with transition rates \(q_{xy}\) and invariant probability measure \(\nu _x\), denote by \(P_{\nu }\) and \(P_x\) the laws of Y started stationary and from x respectively, and by \(E_{\nu }\), \(E_x\) the corresponding expectations. Define the conductances as \(c_{xy}=\nu _x q_{xy} = \nu _y q_{yx}\). Let \(q_x=\sum _y q_{xy}\) and \(c_x = \sum _y c_{xy}\). The transition probability from x to y is \(p_{xy}=\frac{q_{xy}}{q_x}=\frac{c_{xy}}{c_x}\). In the same way as in Sect. 2, we define the hitting time \(H_x\) and the return time \(H^+_x\) to x by Y, and similarly \(H_A\) and \(H^+_A\) for sets \(A\subset \mathcal {S}\).

A function g on \(\mathcal {S}\) is called harmonic in x, if \(\sum _{y}g(y)p_{xy} = g(x)\). For \(x\in \mathcal {S}\) and \(B\subset \mathcal {S}{\setminus }\{x\}\), the equilibrium potential \(g^{\star }_{x,B}\) is defined as the unique function on \(\mathcal {S}\) that is harmonic on \((x\cup B)^c\), 1 on x and 0 on B. It is well known that

$$\begin{aligned} g^{\star }_{x,B}(y) = P_y[H_x \le H_B]. \end{aligned}$$

For a function \(g:\mathcal {S}\rightarrow \mathbb {R}\), the Dirichlet form is defined as

$$\begin{aligned} D(g,g) = \frac{1}{2} \sum _{z\in \mathcal {S}} \sum _{y\sim z} \nu _z q_{zy} (g(z)-g(y))^2, \end{aligned}$$
(8.9)

where \(y\sim z\) means that y and z are neighbors in the sense that \(q_{zy}>0\).

The following proposition is the required generalization of Proposition 3.2 of [16].

Proposition 8.5

For every \(x\in \mathcal {S}\) and \(B\subset \mathcal {S}{\setminus }\{x\}\)

$$\begin{aligned} \frac{1}{E_{\nu }[H_x]} \le D(g^{\star }_{x,B},g^{\star }_{x,B}) \nu (B)^{-2} = c_x P_x[H^+_x> H_B]\nu (B)^{-2}. \end{aligned}$$
(8.10)

To prove this proposition we will need a lemma which is a generalization of [2, Proposition 3.41] giving the extremal characterization of the mean hitting time.

Lemma 8.6

For every \(x\in \mathcal {S}\),

$$\begin{aligned} \frac{1}{E_{\nu }[H_x]} = \inf \left\{ D(g,g):~g:\mathcal {S}\rightarrow \mathbb {R},~g(x)=1, \sum _{y \in \mathcal {S}}\nu _y g(y)=0\right\} . \end{aligned}$$
(8.11)

Proof

The proof follows the lines of [2] with some minor changes to fit into the setting of general continuous-time chains.

We first show that there is a minimizing function g that equals \(g(y) = \frac{Z_{yx}}{Z_{xx}}\), where

$$\begin{aligned} Z_{yx} = \int _0^{\infty } \left( P_y[Y_t=x]-\nu _x\right) \,{\mathrm d}t. \end{aligned}$$

To this end, we introduce the Lagrange multiplier \(\gamma \) and consider g as the minimizer of \(D(g,g) + \gamma \sum _z \nu _z g(z)\) with \(g(x)=1\). The contribution to this of g(y) for \(y\ne x\) is

$$\begin{aligned} \sum _{z\sim y} \nu _y q_{yz} (g(y)-g(z))^2 + \gamma \nu _y g(y), \end{aligned}$$

which is minimized if

$$\begin{aligned} 2\sum _{z\sim y} \nu _y q_{yz} (g(y)-g(z)) + \gamma \nu _y =0. \end{aligned}$$

From this we get for all \(y\in \mathcal {S}\), by introducing the term including the parameter \(\beta \) for the case \(y=x\), that

$$\begin{aligned} g(y) = \sum _{z\sim y} \frac{q_{yz}}{q_y} g(z) - \frac{\gamma }{2} \frac{1}{q_y} + \frac{\beta }{q_y} \mathbf {1}_{\{y=x\}}. \end{aligned}$$

Multiplying by \(q_y\) and \(\nu _y\), and summing over all \(y\in \mathcal {S}\),

$$\begin{aligned} \sum _{y} \sum _{z\sim y} \nu _y q_{yz} g(y) = \sum _y \sum _{z\sim y} \nu _y q_{yz} g(z) - \frac{\gamma }{2} + \beta \nu _x. \end{aligned}$$

By reversibility \(\nu _y q_{yz} = \nu _z q_{zy}\), so the term on the left and the first term on the right are identical, which gives \(\frac{\gamma }{2} = \beta \nu _x\). Thus there is a minimizing g such that

$$\begin{aligned} g(y) = \frac{\beta }{q_y} \left( \mathbf {1}_{\{y=x\}}-\nu _x\right) + \sum _{z\sim y} \frac{q_{yz}}{q_y} g(z). \end{aligned}$$
(8.12)

We now show that up to the factor \(\beta \) the function \(y\mapsto Z_{yx}\) satisfies the same relation. Indeed, by the strong Markov property at the time \(J_1\) of the first jump of Y, which under \(P_y\) is an exponential random variable with mean \(\frac{1}{q_y}\),

$$\begin{aligned} \begin{aligned} Z_{yx}&= \int _0^{\infty }\left( \int _0^{J_1} \left( \mathbf {1}_{\{y=x\}}-\nu _x\right) {\mathrm d}t +\sum _{z\sim y} \frac{q_{yz}}{q_y} \int _0^{\infty } \left( P_z[Y_t=x] -\nu _x\right) {\mathrm d}t\right) P_y({\mathrm d}J_1) \\&= \frac{1}{q_y}\left( \mathbf {1}_{\{y=x\}}-\nu _x\right) + \sum _{z\sim y} \frac{q_{yz}}{q_y} Z_{zx}. \end{aligned} \end{aligned}$$

The function \(g(y)= \frac{Z_{yx}}{Z_{xx}}\) thus satisfies the constrains of the variational problem in (8.11) and fulfills (8.12) with \(\beta = 1/Z_{xx}\). It is thus the minimizer of this variational problem.

Moreover, by [2, Lemmas 2.11 and 2.12], we have \(Z_{xx}=E_{\nu }[H_x] \nu _x\) and \(\nu _x E_y[H_x] = Z_{xx}-Z_{yx}\). Denoting \(h(y)=E_y[H_x]\) and using these equalities, we obtain

$$\begin{aligned} D(g,g) = \frac{1}{E_{\nu }[H_x]^2}D(h,h) = \frac{1}{E_\nu [H_x]}, \end{aligned}$$

where for the last equality we used \(D(h,h) = E_{\nu }[H_x]\), by e.g. [1, Lemma 6]. This completes the proof. \(\square \)

With this lemma the proof of Proposition 8.5 follows the lines of [16].

Proof of Proposition 8.5

To prove the inequality in (8.10), it is sufficient to modify the function \(g^{\star }_{x,B}\) so that it becomes admissible for the variational problem in Lemma 8.6. Write \(g^{\star }\) for \(g^{\star }_{x,B}\) and define \(\tilde{g}\) on \(\mathcal {S}\) as

$$\begin{aligned} \tilde{g} (z)=\frac{g^{\star }(z)-\sum _{y\in \mathcal {S}}\nu _y g^{\star }(y)}{1-\sum _{y\in \mathcal {S}}\nu _y g^{\star }(y)}. \end{aligned}$$

Then \(\tilde{g}\) equals 1 on x and \(\sum _{z\in \mathcal {S}}\nu _z \tilde{g}(z)=0\). Hence, by Lemma 8.6,

$$\begin{aligned} \frac{1}{E_{\nu }[H_x]} \le D(\tilde{g},\tilde{g}) = D(g^{\star },g^{\star }) \left( 1-\sum _{y\in \mathcal {S}}\nu _y g^{\star }(y) \right) ^{-2}. \end{aligned}$$

But \(g^{\star }\) is non-negative, bounded by 1 and non-zero only on \(B^c\), therefore \(\sum _{y\in \mathcal {S}}\nu _y g^{\star }(y) \le \nu (B^c)\), the first part of Proposition 8.5 follows.

To prove the equality in (8.10), we show that

$$\begin{aligned} D(g^{\star }_{x,B},g^{\star }_{x,B}) = P_x[H^+_x > H_B]c_x. \end{aligned}$$
(8.13)

Indeed, let again \(g^{\star }=g^{\star }_{x,B}\). If \(g^{\star }\) is harmonic in z, the second sum in the Dirichlet form (8.9) is

$$\begin{aligned} \sum _{y\sim z} c_{zy}(g^{\star }(z)-g^{\star }(y))^2 = \sum _{y\sim z} c_{zy} (g^{\star }(y)^2 - g^{\star }(z)^2). \end{aligned}$$

This shows that the contribution to the Dirichlet form of every edge that connects two vertices in which \(g^{\star }\) is harmonic or zero vanishes. Therefore \(D(g^{\star },g^{\star })\) reduces to

$$\begin{aligned} D(g^{\star },g^{\star })&=\frac{1}{2}\left( \sum _{y\sim x} c_{xy}(1-g^{\star }(y))^2 + \sum _{y\sim x} c_{xy}(1-g^{\star }(y)^2)\right) \\&= \sum _{y\sim x} c_{xy}(1-g^{\star }(y))\\&= c_x \sum _{y\sim x} p_{xy} P_y[H_x>H_B]\\&= c_x P_x[H_x^+ > H_B]. \end{aligned}$$

This proves (8.13) and thus the proposition. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Černý, J., Wassmer, T. Aging of the Metropolis dynamics on the random energy model. Probab. Theory Relat. Fields 167, 253–303 (2017). https://doi.org/10.1007/s00440-015-0681-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-015-0681-1

Mathematics Subject Classification

Navigation