Skip to main content
Log in

Characterization of transcriptional and posttranscriptional properties of native and cultured phenotypically modulated vascular smooth muscle cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Various in vitro models are used for studying phenotypic modulation of vascular smooth muscle cells (VSMCs) and the established culture of vascular smooth muscle cells (cVSMCs) is most often used for this purpose. On the other hand, vascular interstitial cells (VICs) are native phenotypically modulated VSMCs present in blood vessels under normal physiological conditions. The aim of this work has been to compare the difference in expression of a number of VSMC-specific markers, which are commonly used for the characterisation of phenotypic modulation of VSMCs, between freshly dispersed VSMCs, VICs and cVSMCs from rat abdominal aorta. Our experiments show that VICs are present in the rat aorta and express markers of VSMCs. Both VICs and cVSMCs display the presence of sparse individual stress fibres enriched in alpha smooth muscle actin (αSM-actin), whereas in VSMCs, this protein is more densely packed. Compared with contractile VSMCs, both VICs and cVSMCs display decreased expression of VSMC-specific markers such as smoothelin, myosin light chain kinase and SM22α; however, the expression of two major cytoskeletal and contractile proteins (smooth muscle myosin heavy chain and αSM-actin) was downregulated in cVSMCs but not in VICs compared with contractile VSMCs. These results suggest different mechanisms for the phenotypic modulation of cVSMCs and VICs. VICs might therefore represent a novel convenient model for studying molecular mechanisms that govern the phenotypic modulation of VSMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aikawa M, Rabkin E, Voglic SJ, Shing H, Nagai R, Schoen FJ, Libby P (1998) Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma. Circ Res 83:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Bolton TB, Gordienko DV, Pucovsky V, Povstyan OV, Harhun MI, Parsons SP (2003) Calcium events in smooth muscles and their associated cells. Neurophysiology 35:155–160

    Article  CAS  Google Scholar 

  • Campbell GR, Campbell JH (1985) Smooth muscle phenotypic changes in arterial wall homeostasis: implications for the pathogenesis of atherosclerosis. Exp Mol Pathol 42:139–162

    Article  PubMed  CAS  Google Scholar 

  • Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    PubMed  CAS  Google Scholar 

  • Christen T, Bochaton-Piallat ML, Neuville P, Rensen S, Redard M, van Eys G, Gabbiani G (1999) Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation. Circ Res 85:99–107

    Article  PubMed  CAS  Google Scholar 

  • Christen T, Verin V, Bochaton-Piallat M, Popowski Y, Ramaekers F, Debruyne P, Camenzind E, van Eys G, Gabbiani G (2001) Mechanisms of neointima formation and remodeling in the porcine coronary artery. Circulation 103:882–888

    Article  PubMed  CAS  Google Scholar 

  • van Eys GJ, Niessen PM, Rensen SS (2007) Smoothelin in vascular smooth muscle cells. Trends Cardiovasc Med 17:26–30

    Article  PubMed  Google Scholar 

  • Giuriato L, Scatena M, Chiavegato A, Zanellato AM, Guidolin D, Pauletto P, Sartore S (1993) Localization and smooth muscle cell composition of atherosclerotic lesions in Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb 13:347–359

    Article  PubMed  CAS  Google Scholar 

  • Glukhova MA, Kabakov AE, Frid MG, Ornatsky OI, Belkin AM, Mukhin DN, Orekhov AN, Koteliansky VE, Smirnov VN (1988) Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc Natl Acad Sci USA 85:9542–9546

    Article  PubMed  CAS  Google Scholar 

  • Hao H, Gabbiani G, Camenzind E, Bacchetta M, Virmani R, Bochaton-Piallat ML (2006) Phenotypic modulation of intima and media smooth muscle cells in fatal cases of coronary artery lesion. Arterioscler Thromb Vasc Biol 26:326–332

    Article  PubMed  CAS  Google Scholar 

  • Harhun MI, Gordienko DV, Povstyan OV, Moss RF, Bolton TB (2004) Function of interstitial cells of Cajal in the rabbit portal vein. Circ Res 95:619–626

    Article  PubMed  CAS  Google Scholar 

  • Harhun MI, Pucovsky V, Povstyan OV, Gordienko DV, Bolton TB (2005) Interstitial cells in the vasculature. J Cell Mol Med 9:232–243

    Article  PubMed  CAS  Google Scholar 

  • Harhun M, Gordienko D, Kryshtal D, Pucovsky V, Bolton T (2006) Role of intracellular stores in the regulation of rhythmical [Ca(2+)](i) changes in interstitial cells of Cajal from rabbit portal vein. Cell Calcium 40:287–298

    Article  PubMed  CAS  Google Scholar 

  • Harhun MI, Szewczyk K, Laux H, Prestwich SA, Gordienko DV, Moss RF, Bolton TB (2009) Interstitial cells from rat middle cerebral artery belong to smooth muscle cell type. J Cell Mol Med 13:4532–4539

    Article  PubMed  CAS  Google Scholar 

  • Harhun MI, Huggins CL, Ratnasingham K, Raje D, Moss RF, Szewczyk K, Vasilikostas G, Greenwood IA, Khong TK, Wan A, Reddy M (2012) Resident phenotypically modulated vascular smooth muscle cells in healthy human arteries. J Cell Mol Med 16:2802–2812

    Article  PubMed  CAS  Google Scholar 

  • Huang QQ, Fisher SA, Brozovich FV (1999) Forced expression of essential myosin light chain isoforms demonstrates their role in smooth muscle force production. J Biol Chem 274:35095–35098

    Article  PubMed  CAS  Google Scholar 

  • Kawashima M, Nabeshima Y, Obinata T, Fujii-Kuriyama Y (1987) A common myosin light chain is expressed in chicken embryonic skeletal, cardiac, and smooth muscles and in brain continuously from embryo to adult. J Biol Chem 262:14408–14414

    PubMed  CAS  Google Scholar 

  • Kocher O, Gabbiani G (1986) Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Hum Pathol 17:875–880

    Article  PubMed  CAS  Google Scholar 

  • Kocher O, Gabbiani F, Gabbiani G, Reidy MA, Cokay MS, Peters H, Huttner I (1991) Phenotypic features of smooth muscle cells during the evolution of experimental carotid artery intimal thickening. Biochemical and morphologic studies. Lab Invest 65:459–470

    PubMed  CAS  Google Scholar 

  • Kramer J, Aguirre-Arteta AM, Thiel C, Gross CM, Dietz R, Cardoso MC, Leonhardt H (1999) A novel isoform of the smooth muscle cell differentiation marker smoothelin. J Mol Med 77:294–298

    Article  PubMed  CAS  Google Scholar 

  • Li L, Miano JM, Cserjesi P, Olson EN (1996) SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res 78:188–195

    Article  PubMed  CAS  Google Scholar 

  • van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ, (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134:401–411

    Article  PubMed  Google Scholar 

  • van der Loop FT, Gabbiani G, Kohnen G, Ramaekers FC, van Eys GJ, (1997) Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arterioscler Thromb Vasc Biol 17:665–671

    Article  PubMed  Google Scholar 

  • Mack CP (2011) Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 31:1495–1505

    Article  PubMed  CAS  Google Scholar 

  • Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27:1248–1258

    Article  PubMed  CAS  Google Scholar 

  • Miano JM, Cserjesi P, Ligon KL, Periasamy M, Olson EN (1994) Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis. Circ Res 75:803–812

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi K, Aikawa M, Tani T, Nakahara K, Kawai S, Nagai R, Okada R, Yamaguchi H (1998) Effect of probucol on smooth muscle cell proliferation and dedifferentiation after vascular injury in rabbits: possible role of PDGF. Cardiovasc Drugs Ther 12:251–260

    Article  PubMed  CAS  Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  CAS  Google Scholar 

  • Povstyan OV, Gordienko DV, Harhun MI, Bolton TB (2003) Identification of interstitial cells of Cajal in the rabbit portal vein. Cell Calcium 33:223–239

    Article  PubMed  CAS  Google Scholar 

  • Pucovsky V, Moss RF, Bolton TB (2003) Non-contractile cells with thin processes resembling interstitial cells of Cajal found in the wall of guinea-pig mesenteric arteries. J Physiol (Lond) 552:119–133

    Article  CAS  Google Scholar 

  • Pucovsky V, Harhun MI, Povstyan OV, Gordienko DV, Moss RF, Bolton TB (2007) Close relation of arterial ICC-like cells to the contractile phenotype of vascular smooth muscle cell. J Cell Mol Med 11:764–775

    Article  PubMed  Google Scholar 

  • Regan CP, Adam PJ, Madsen CS, Owens GK (2000) Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest 106:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Rensen SS, Doevendans PA, van Eys GJ, (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15:100–108

    Article  PubMed  CAS  Google Scholar 

  • Sappino AP, Schurch W, Gabbiani G (1990) Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63:144–161

    PubMed  CAS  Google Scholar 

  • Shanahan CM, Weissberg PL (1998) Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 18:333–338

    Article  PubMed  CAS  Google Scholar 

  • Shanahan CM, Weissberg PL, Metcalfe JC (1993) Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ Res 73:193–204

    Article  PubMed  CAS  Google Scholar 

  • Skalli O, Bloom WS, Ropraz P, Azzarone B, Gabbiani G (1986) Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations. J Submicrosc Cytol 18:481–493

    PubMed  CAS  Google Scholar 

  • Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37:315–321

    Article  PubMed  CAS  Google Scholar 

  • Skalli O, Gabbiani F, Gabbiani G (1990) Action of general and alpha-smooth muscle-specific actin antibody microinjection on stress fibers of cultured smooth muscle cells. Exp Cell Res 187:119–125

    Article  PubMed  CAS  Google Scholar 

  • Sobue K, Hayashi K, Nishida W (1999) Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem 190:105–118

    Article  PubMed  CAS  Google Scholar 

  • Solway J, Seltzer J, Samaha FF, Kim S, Alger LE, Niu Q, Morrisey EE, Ip HS, Parmacek MS (1995) Structure and expression of a smooth muscle cell-specific gene, SM22 alpha. J Biol Chem 270:13460–13469

    Article  PubMed  CAS  Google Scholar 

  • Tang DC, Kang HM, Jin JP, Fraser ED, Walsh MP (1996) Structure-function relations of smooth muscle calponin. The critical role of serine 175. J Biol Chem 271:8605–8611

    Article  PubMed  CAS  Google Scholar 

  • Walsh MP (1994) Regulation of vascular smooth muscle tone. Can J Physiol Pharmacol 72:919–936

    Article  PubMed  CAS  Google Scholar 

  • Weissberg PL, Cary NR, Shanahan CM (1995) Gene expression and vascular smooth muscle cell phenotype. Blood Press Suppl 2:68–73

    PubMed  CAS  Google Scholar 

  • Worth NF, Rolfe BE, Song J, Campbell GR (2001) Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton 49:130–145

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Ritchie RP, Huang H, Zhang J, Chen YE (2011) Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler Thromb Vasc Biol 31:1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Owens GK (2005) Molecular determinants of vascular smooth muscle cell diversity. Circ Res 96:280–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the SGUL Biomic Centre for the use of the Mx3000 equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksym I. Harhun.

Additional information

This study was supported by a British Heart Foundation Intermediate Basic Science Research Fellowship to M.I.H. (FS/06/077).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 885 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huggins, C.L., Povstyan, O.V. & Harhun, M.I. Characterization of transcriptional and posttranscriptional properties of native and cultured phenotypically modulated vascular smooth muscle cells. Cell Tissue Res 352, 265–275 (2013). https://doi.org/10.1007/s00441-012-1541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1541-2

Keywords

Navigation