Skip to main content

Advertisement

Log in

An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton

  • Global Change and Conversation Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

An indoor mesocosm system was set up to study the response of phytoplankton and zooplankton spring succession to winter and spring warming of sea surface temperatures. The experimental temperature regimes consisted of the decadal average of the Kiel Bight, Baltic Sea, and three elevated regimes with 2°C, 4°C, and 6°C temperature difference from that at baseline. While the peak of the phytoplankton spring bloom was accelerated only weakly by increasing temperatures (1.4 days per degree Celsius), the subsequent biomass minimum of phytoplankton was accelerated more strongly (4.25 days per degree Celsius). Phytoplankton size structure showed a pronounced response to warming, with large phytoplankton being more dominant in the cooler mesocosms. The first seasonal ciliate peak was accelerated by 2.1 days per degree Celsius and the second one by 2.0 days per degree Celsius. The over-wintering copepod populations declined faster in the warmer mesocosm, and the appearance of nauplii was strongly accelerated by temperature (9.2 days per degree Celsius). The strong difference between the acceleration of the phytoplankton peak and the acceleration of the nauplii could be one of the “Achilles heels” of pelagic systems subject to climate change, because nauplii are the most starvation-sensitive life cycle stage of copepods and the most important food item of first-feeding fish larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aberle N, Lengfellner K, Sommer U (2006) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia (this issue)

  • Bautista B, Harris RP, Tranter PRG, Harbour D (1992) In situ copepod feeding and grazing rates during a spring bloom dominated by Phaeocystis sp. in the English Channel. J Plankton Res 14:691–703

    Google Scholar 

  • Behrends G (1996) Long-term investigation of seasonal mesozooplankton dynamics in Kiel Bight, Germany. In: Proceedings of the 13th symposium on Baltic and Marine Biology, pp 93–98

  • Brock TD (1981) Calculating solar radiation for ecological studies. Ecol Model 14:1–19

    Article  Google Scholar 

  • Cushing DH (1975) Marine ecology and fisheries. Cambridge University Press, Cambridge

  • Edwards M, Beaugrand G, Reid PC, Rowden AA, Joes MB (2002) Ocean climate anomalies and the ecology of the North Sea. Mar Ecol Progr Ser 239:1–10

    Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Feuchtmayr H (2004) Mesozooplankton impacts on lower trophic levels from freshwater, marine and brackish systems in spring—a comparative study. PhD thesis, University of Kiel

  • Fromentin JM, Planque B (1996) Calanus and the environment in the eastern North Atlantic. II: Influence of the North Atlantic Oscillation on C. finnmarchicus and C. helgolandicus. Mar Ecol Progr Ser 134:111–118

    Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  CAS  Google Scholar 

  • Granéli E, Turner JT (2002) Top-down regulation in ctenophore–copepod–ciliate–diatom–phytoflagellate communities in coastal waters: a mesocosm study. Mar Ecol Progr Ser 239:57–68

    Google Scholar 

  • Greve W, Reiners F (1995) Biocoenotic process patterns in the German Bight. In: Eleftheriou A, et al (eds) Biology and ecology of shallow coastal waters. Olsen & Olsen, Fredensborg, pp 67–71

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd edition. Wiley VCH, Weinheim pp 159–228

    Google Scholar 

  • Hillebrand H, Dürselen CD, Kischtel D, Pollingher U (1999) Biovolume calculations for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56:1801–1808

    Article  CAS  Google Scholar 

  • International Panel on Climate Change (IPCC) (2001) Climate change 2001: impacts, adaptations and vulnerability. UNEP and WHO, 2001

  • Irigoien X, Titelman J, Harris RP, Harbour D, Castellani C (2003) Feeding of Calanus finnmarchicus nauplii in the Irminger Sea. Mar Ecol Progr Ser 262:193–200

    Google Scholar 

  • Katechakis A, Stibor H, Sommer U, Hansen T (2002) Changes in the phytoplankton community and microbial food web of Blanes Bay (Catalan Sea, NW Mediterranean) under prolonged grazing pressure by doliolids (Tunicata), cladocerans or copepods (Crustacea). Mar Ecol Progr Ser 234:55–69

    Google Scholar 

  • Kleppel GS (1993) On the diet of calanoid copepods. Mar Ecol Progr Ser 99:183–195

    Google Scholar 

  • Lehmann A, Krauss WW, Hinrichsen HH (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus 54A:299–316

    Google Scholar 

  • Lopez MDG (1996) Effect of starvation on development and survivorship of nauplian Calanus pacificus (Brodsky). J Exp Mar Biol Ecol 203:133–146

    Article  Google Scholar 

  • Madhudatrap M, Nehring S, Lenz J (1996) Resting eggs of zooplankton (Copepoda and Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Mar Biol 125:77–87

    Article  Google Scholar 

  • Matthäus W., H. Schinke (1994) Mean atmospheric circulation patterns associated with Major Baltic Inflows. Dt Hydrogr Z 46:321–338

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships in dinoflagellates, diatoms and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Montagnes DJS, Lynn DH, Roff JC, Taylor WD (1988) The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar Biol 99:21–30

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Google Scholar 

  • Riley GA (1957) Phytoplankton of the North Central Sargasso Sea. Limnol Oceanogr 2:252–270

    Google Scholar 

  • Scheffer M, Straile D, van Nes EH, Hosper H (2001) Climate warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783

    Article  Google Scholar 

  • Sell AF, van Keuren D, Madin LP (2001) Predation by omnivorous copepods on early developmental stages of Calanus finnmarchicus and Pseudocalanus spp. Limnol Oceanogr 46:953–959

    Article  Google Scholar 

  • Sharp JH (1974) Improved analysis for particulate organic carbon and nitrogen from seawater. Limnol Oceanogr 19:984–989

    Article  CAS  Google Scholar 

  • Smayda TJ (1971) Normal and accelerated sinking of diatoms in the sea. Mar Geol 11:105–122

    Article  Google Scholar 

  • Smetacek V, v Bodungen B, Knoppers B, Peinert R, Pollehne F, Stegmann P, Zeitszschel B (1984) Seasonal stages characterizing the annual cycle of an inshore pelagic ecosystem. Rapp P V Reun Cons Int Explor Mer 183:126–135

    Google Scholar 

  • Sommer U (1991) The application of the Droop model of nutrient limitation to natural phytoplankton. Verh Int Verein Limnol 24:791–794

    CAS  Google Scholar 

  • Sommer U (1996) Plankton ecology: the last two decades of progress. Naturwiss 83:393–301

    Article  Google Scholar 

  • Sommer U, Stibor H (2002) Copepoda–Cladocera–Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174

    Article  Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Sommer F, Hansen T, Feuchtmayr H, Santer B, Tokle N, Sommer U (2003a) Do calanoid copepods suppress appendicularians in the coastal ocean? J Plankton Res 25:869–871

    Article  Google Scholar 

  • Sommer U, Sommer F, Santer B, Zöllner E, Jürgens K, Jamieson C, Boersma M, Gocke K (2003b) Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135:639–647

    Google Scholar 

  • Sommer F, Saage A, Santer B, Hansen T, Sommer U (2005a) Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study. Mar Ecol Prog Ser 286:99–106

    CAS  Google Scholar 

  • Sommer U, Hansen T, Blum O, Holzner N, Vadstein O, Stibor H (2005b) Copepod and microzooplankton grazing in mesocosms fertilised with different Si:N ratios: no overlap between food spectra and Si:N influence on zooplankton trophic level. Oecologia 142:274–283

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton

    Google Scholar 

  • Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Article  Google Scholar 

  • Straile D, Adrian R (2000) The North Atlantic Oscillation and plankton dynamics in two European lakes—two variations on a general theme. Global Change Biol 6:663–670

    Article  Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Explor Mer 18:287–295

    Google Scholar 

  • Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light–temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:105–111

    Article  Google Scholar 

  • Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth Is it real? Limnol Oceanogr 42:1436–1443

    Article  CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor Angew Limnol 9:263–272

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • White HH (1979) Effects of dinoflagellate bioluminescence on the ingestion rates of herbivorous zooplankton. J Exp Mar Biol Ecol 36:217–224

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Nat Acad Sci U S A 96:1463–1468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG (Deutsche Forschungsgemeinschaft) within the priority program 1162 “AQUASHIFT” (The impact of climate variability on aquatic ecosystems). Constructive comments by Herwig Stibor and one anonymous reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Sommer.

Additional information

Communicated by Roland Brandl.

Priority programme of the German Research Foundation—contribution 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, U., Aberle, N., Engel, A. et al. An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150, 655–667 (2007). https://doi.org/10.1007/s00442-006-0539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0539-4

Keywords

Navigation