Skip to main content

Advertisement

Log in

Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Cylindrospermopsis raciborskii, an invasive freshwater cyanobacterium, originated from the tropics but has spread to temperate zones over the last few decades. Its northernmost populations in Europe occur in North German lakes. How such dramatic changes in its biogeography are possible and how its population dynamics in the newly invaded habitats are regulated are still unexplained. We therefore conducted a long-term (1993–2005) study of two German lakes to elucidate the mechanisms behind C. raciborskii population dynamics and to identify the abiotic constraints on its development. Our data revealed that pelagic populations of C. raciborskii thrived for three months during the summer, contributing up to 23% of the total cyanobacteria biovolume. Population sizes varied greatly between years without exhibiting any distinct long-term trends. In the annual lifecycle, C. raciborskii filaments emerged in the pelagic habitat when the temperature rose above 15–17 °C. At that time, mean photosynthetically active radiation in the mixed water column (Imix) overstepped its maximum. Rates of population net increase were highest at the beginning of the season (0.15–0.28 day−1), declined continuously over time, and were significantly positively correlated with Imix. This indicates that the onset of the pelagic population is temperature-mediated and that Imix controls its growth. Since Imix peaks before the population onset, the time of germination is of crucial importance for successful development. To test this hypothesis, we designed a model to simulate pelagic population size, starting at different dates in the annual cycle. Moving the population onset forward by 30 days resulted in a doubling of the population size. We therefore conclude that an earlier rise in water temperature associated with climate change has promoted the spread of C. raciborskii to the temperate zone. Earlier warming permits earlier germination, thereby shifting the pelagic populations to a phase with higher Imix, which advances growth and the population establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3
Fig. 4A–D
Fig. 5
Fig. 6A–B

Similar content being viewed by others

References

  • Behrendt H, Nixdorf B (1993) The carbon balance of phytoplankton production and loss processes based on in situ measurements in a shallow lake. Int Rev Ges Hydrobiol 78:439–458

    Article  Google Scholar 

  • Bourke ATC, Hawes RB, Neilson A, Stallman ND (1983) An outbreak of the hepatoenteritis (the Palm island mystery disease) possibly caused by algal intoxication. Toxicon Suppl 3:45–48

    Google Scholar 

  • Bouvy M, Molica R, De Oliveira S, Marinho M, Beker B (1999) Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northern Brazil. Aqua Micobiol Ecol 20:285–297

    Google Scholar 

  • Branco CWC, Senna PAC (1994) Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá reservoir, Brasília, Brazil. Algol Stud 75:85–96

    Google Scholar 

  • Briand JF, Robillot C, Quiblier-Lloberas C, Humbert JF, Couté A, Bernard C (2002) Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res 36:3183–3192

    Article  PubMed  CAS  Google Scholar 

  • Briand JF, Leboulanger C, Humbert JF, Bernard C, Dufour P (2004) Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? J Phycol 40:231–238

    Article  Google Scholar 

  • Chonudomkul D, Yongmanitchai W, Theeragool G, Kawachi M, Kasai F, Kaya K, Watanabe MM (2004) Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiol Ecol 48:345–355

    Article  CAS  PubMed  Google Scholar 

  • Couté A, Leitao M, Martin C (1997) Premièr observation du genre Cylindrospermopsis (Cyanophyceae, Nostocales) en France. Cyptogaie Algol 18:57–70 (in French)

    Google Scholar 

  • Czensny R (1938) Die oscillatorienerkrankung unserer seen, biologie und chemismus einiger märkischer seen. Vom Wasser 8:36–57

    Google Scholar 

  • De Nobel WT, Huisman J, Snoep JL, Mur LR (1997) Competition for phosphorus between the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. FEMS Microbiol Ecol 24:259–267

    Article  Google Scholar 

  • DEV (1976–1998) (Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung). Schlammuntersuchung. Verlag Chemie, Weinheim, D11, E5, D9, C9, E1, H7

  • Dobberfuhl DR (2003) Cylindrospermopsis raciborskii in three central Florida lakes: population dynamics, controls, and management implications. Lake Res Manage 19:341–348

    Article  CAS  Google Scholar 

  • Dokulil MT, Mayer J (1996) Population dynamics and photosynthetic rates of a CylindrospermopsisLimnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol Stud 83:179–195

    Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 40:881–884

    Article  CAS  Google Scholar 

  • Fabbro LD, Duivenvoorden LJ (1996) Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Ruju in Fitzroy river in tropical central Queensland. Mar Freshw Res 47:685–694

    Article  CAS  Google Scholar 

  • Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42:3113–3321

    Article  CAS  Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic oscillation. Limnol Oceanogr 45:1058–1066

    Article  Google Scholar 

  • Gorzó G (1987) Fizikai és kémiai faktorok hatása a Balatonban elöforduló heterocisztás cianobaktériumok spóráinak csírázására (The influence of physical and chemical factors on the germination of spores of heterocystic cyanobacteria in lake Balaton). Hidrol Közlöny 67:127–133 (in Hungarian)

    Google Scholar 

  • Gugger M, Molica R, Le Berre B, Dufour P, Bernard C, Humbert JF (2005) Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents. Appl Environ Microbiol 71:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Hamilton PB, Ley LM, Dean S, Pick FR (2005) The occurrence of the cyanobacterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada. Phycologia 44:17–25

    Article  Google Scholar 

  • Haney JF (1987) Field studies on zooplankton–cyanobacteria interactions. NZ J Mar Freshw Res 21:467–475

    Article  Google Scholar 

  • Hawkins PR, Runnegar MTC, Jackson ARB, Falconer IR (1985) Severe hepatotoxicity caused by the tropical cyanobacterium (blue–green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol 50:1292–1295

    PubMed  CAS  Google Scholar 

  • Hawkins PR, Chandrasena NR, Jones GJ, Humpage AR, Falconer IR (1997) Isolation and toxicity of Cylindrospermopsis raciborskii from an ornamental lake. Toxicon 35:341–346

    Article  PubMed  CAS  Google Scholar 

  • Istvánovics V, Shafik HM, Présing M, Juhos S (2000) Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw Biol 43:257–275

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, London, pp 509

    Google Scholar 

  • Krienitz L, Hegewald E (1996) Über das Vorkommen von wärmeliebenden Blaualgenarten in einem norddeutschen Gewässer. Lauterb H 26:55–63 (in German)

    Google Scholar 

  • Lagos N, Onodera H, Zagatto PA, Andrinolo D, Azevedo SMFQ, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373

    Article  PubMed  CAS  Google Scholar 

  • Lambrinos JG (2004) How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85:2061–2070

    Google Scholar 

  • Li R, Carmichael WW, Brittain S, Eaglesham GK, Shaw GR, Noparatnaraporn AMN, Yongmanitchai W, Kaya K, Watanabe MM (2001) Detection of cylindrospermopsin from a strain of Cylindrospermopsis racibroskii (cyanobacteria) isolated from Thailand. Toxicon 39:973–980

    Google Scholar 

  • McGregor GB, Fabbro LD (2000) Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: Implications for monitoring and management. Lakes Reserv Res Manage 5:195–205

    Article  Google Scholar 

  • Mischke U (2003) Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecol 24:11–23

    Article  Google Scholar 

  • Moore D, O’Donohue M, Shaw G, Critchley C (2003) Potential triggers for akinete differentiation in an Australian strain of the cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). Hydrobiologia 506–509:175–180

    Article  Google Scholar 

  • Moore D, O’Donohue M, Garnett C, Critchley C, Shaw G (2005) Factors affecting akinete differentiation in Cylindrospermopsis raciborskii (Nostocales, cyanobacteria). Freshw Biol 50:345–352

    Article  Google Scholar 

  • Nixdorf B, Deneke R (1997) Why very shallow lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343:269–284

    Article  CAS  Google Scholar 

  • Nixdorf B, Mischke U, Rücker J (2003) Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111–121

    Article  Google Scholar 

  • Ohtani I, Moore RE, Runnegar MTC (1992) Cylindrospermopsin: a potent hepatotoxin from the blue–green alga Cylindrospermopsis raciborskii. J Am Chem Soc 114:7941–7942

    Article  CAS  Google Scholar 

  • Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding highly adaptive blue–green algal species: worldwide distribution and review of its ecology. Arch Hydrobiol Suppl 107:563–593

    Google Scholar 

  • Padisák J, Reynolds CS (1998) Selection of phytoplankton associations in Lake Balaton, Hungary in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384:41–53

    Article  Google Scholar 

  • Présing M, Herodek S, Vörös L, Kóbor I (1996) Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Arch Hydrobiol 136:553–562

    Google Scholar 

  • Riley GA (1957) Phytoplankton in the north central Sargasso Sea 1950–1952. Limnol Oceanogr 2:252–272

    Google Scholar 

  • Rott E (1981) Some results from phytoplankton counting intercalibration. Schweiz Z Hydrol 43:34–62

    Article  Google Scholar 

  • Rücker J, Wiedner C, Zippel P (1997) Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342/343:107–115

    Article  Google Scholar 

  • Saker ML, Griffiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39:349–354

    Article  Google Scholar 

  • Saker ML, Nogueira ICG, Vasconcelos CM, Neilan BA, Eaglesham GK, Pereira P (2003) First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. Ecotoxicol Environ Saf 55:243–250

    Article  PubMed  CAS  Google Scholar 

  • Schäperclaus W (1941) Seenverschlechterung. Z Fischerei XXXVIII:345–375

    Google Scholar 

  • Shafik HM, Herodek S, Présing M, Vörös L (2001) Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju. Algol Stud 103:75–93

    Google Scholar 

  • Shapiro J (1990) Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verh Int Ver Limnol 24:38–54

    Google Scholar 

  • Skuja H (1938) Süsswasseralgen aus Griechenland und Kleinasien. Hedwigia 77:15–70

    Google Scholar 

  • Souza RCR, Carvalho MC, Truzzi AC (1998) Cylindrospermopsis raciborskii (Wolosz.) Seenaya and Subba Raju (Cyanophyceae) dominance and a contribution to the knowledge of Rio Pequeno Arm, Billings reservoir, Brazil. Environ Toxicol Water Qual 13:73–81

    Article  Google Scholar 

  • Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Article  Google Scholar 

  • Stüken A, Rücker J, Endrulat T, Preussel K, Hemm M, Nixdorf B, Karsten U, Wiedner C (2006) Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45:696–703

    Article  Google Scholar 

  • Tóth LG, Padisák J (1986) Meterological factors affecting the bloom of Anabaenopsis raciborskii Wolsz. (Cyanophytoa: Hormogonales) in the shallow lake Balaton, Hungary. J Plankton Res 8:353–363

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoeg-Guldenberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Ward AK, Wetzel RG (1980) Interaction of light and nitrogen source among planktic blue–green algae. Arch Hydrobiol 90:1–25

    CAS  Google Scholar 

  • Weyhenmeyer GA, Blenckner T, Petterson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44:1788–1792

    Article  Google Scholar 

  • Wiedner C, Nixdorf B, Heinze R, Wirsing B, Neumann U, Weckesser J (2002) Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes. Arch Hydrobiol 155:383–400

    CAS  Google Scholar 

  • Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106

    Google Scholar 

  • Woloszynska J (1912) Das Phytoplankton einiger Javanian Seen mit Berücksichtigung des Sawa-Planktons. Bull Int Acad Sci Cracoviae Ser B 6:649–709

    Google Scholar 

  • Wood SA, Stirling DJ (2003) First identification of the cylindrospermopsin-producing cyanobacterium Cylindrospermopsis raciborskii in New Zealand. NZ J Mar Freshw Res 37:821–828

    Article  CAS  Google Scholar 

  • Wundsch HH (1940) Beiträge zur Fischereibiologie märkischer Seen, VI. die Entwicklung eines besonderen Seentypus (H2S-Oscillatorien-Seen) im Flußgebiet der Spree und Havel, und seine Bedeutung für die Fischereibiologischen Bedingungen in dieser Region. Z Fischerei XXXVIII:443–648

    Google Scholar 

Download references

Acknowledgments

We would like to thank Ingo Henschke and Wolfgang Terlinden for their excellent field work, and Gudrun Lippert, Tina Hanke, Ute Abel and Cornelia Tahedl for diligent work in the lab. Ute Mischke, Paul Zippel and Anette Tworeck (LBH, Freiburg) kindly supplied phytoplankton data. Data on global radiation was kindly provided by the Meteorological Observatory in Lindenberg, Germany. Suzyon O’Neal Wandrey proofread the English draft of the manuscript. The study was funded by the German Ministry of Education, Science and Research (BMBF), the German Research Foundation (DFG), and the Kompetenzzentrum Wasser Berlin, with the financial support of Veolia Water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Wiedner.

Additional information

Communicated by Dag Olav Hessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedner, C., Rücker, J., Brüggemann, R. et al. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152, 473–484 (2007). https://doi.org/10.1007/s00442-007-0683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0683-5

Keywords

Navigation