Skip to main content
Log in

Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests

  • Ecosystem Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Species’ functional traits may help determine rates of carbon gain, with physiological and morphological trade-offs relating to shade tolerance affecting photosynthetic capacity and carbon allocation strategies. However, few studies have examined these trade-offs from the perspective of whole-plant biomass gain of adult trees. We compared tree-level annual diameter increments and annual above-ground biomass (AGB) increments in eight long-term plots in hyper-diverse northwest Amazonia to wood density (ρ; a proxy for shade tolerance), whilst also controlling for resource supply (light and soil fertility). ρ and annual diameter increment were negatively related, confirming expected differences in allocation associated with shade tolerance, such that light-demanding species allocate a greater proportion of carbon to diameter gain at the expense of woody tissue density. However, contrary to expectations, we found a positive relationship between ρ and annual AGB increment in more fertile sites, although AGB gain did not differ significantly with ρ class on low-fertility sites. Whole-plant carbon gain may be greater in shade-tolerant species due to higher total leaf area, despite lower leaf-level carbon assimilation rates. Alternatively, rates of carbon loss may be higher in more light-demanding species: higher rates of litterfall, respiration or allocation to roots, are all plausible mechanisms. However, the relationships between ρ and AGB and diameter increments were weak; resource availability always exerted a stronger influence on tree growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aiba SI, Kohyama T (1997) Crown architecture and life-history traits of 14 tree species in a warm-temperate rain forest: significance of spatial heterogeneity. J Ecol 85:611–624

    Article  Google Scholar 

  • Araujo TM, Higuchi N, de Carvalho Junior JA (1999) Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Para, Brazil. For Ecol Manage 117:43–52

    Article  Google Scholar 

  • Augspurger CK (1984) Light requirements of neotropical tree seedlings: a comparative study of growth and survival. J Ecol 72:777–795

    Article  Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva JNM, Martinez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562

    Article  Google Scholar 

  • Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol Syst 11:287–310

    Article  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Ann Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Bohlman S, O’Brien S (2006) Allometry, adult stature and regeneration requirement of 65 tree species on Barro Colorado Island, Panama. J Trop Ecol 22:123–136

    Article  Google Scholar 

  • Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, Sankaran M, Naeem S (2005) Species loss and aboveground carbon storage in a tropical forest. Science 310:1029–1031

    Article  PubMed  CAS  Google Scholar 

  • Burslem DFRP, Whitmore TC (1996) Silvics and wood properties of the common timber tree species on Kolombangara. Tropical forest papers 34. Oxford Forestry Institute

  • Cao KF, Ohkubo T (1998) Allometry, root/shoot ratio and root architecture in understorey saplings of deciduous dicotyledonous trees in central Japan. Ecol Res 13:217–227

    Article  Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP (1998) Ancient trees in Amazonia. Nature 391:135

    Article  CAS  Google Scholar 

  • Chambers JQ, dos Santos J, Ribeiro RJ, Higuchi H (2001) Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For Ecol Manage 152:73–84

    Article  Google Scholar 

  • Chambers JQ, Higuchi N, Teixeira LM, dos Santos J, Laurance SG, Trumbore SE (2004) Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia 141:596–611

    Article  PubMed  Google Scholar 

  • Chao KJ, Phillips OL, Gloor E, Monteagudo A, Torres-Lezama A, Martinez RV (2007) Growth and wood density predict tree mortality in Amazon forests. J Ecol 96:281–292

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2,456 neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, Co LL, Dattaraja HS, Davies SJ, Esufali S, Ewango CEN, Feeley KJ, Foster RB, Gunatilleke N, Gunatilleke S, Hall P, Hart TB, Hernandez C, Hubbell SP, Itoh A, Kiratiprayoon S, LaFrankie JV, Loo de Lao S, Makana J-R, Noor MNS, Kassim AR, Samper C, Sukumar R, Suresh HS, Tan S, Thompson J, Tongco MDC, Valencia R, Vallejo M, Villa G, Yamakura T, Zimmerman JK, Losos EC (2008) Assessing evidence for a pervasive alteration in tropical tree communities. PLOS Biol 6:e45

    Article  PubMed  CAS  Google Scholar 

  • Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol 72:533–564

    Google Scholar 

  • Clark DA, Clark DB (1992) Life history diversity of canopy and emergent trees in a neotropical rainforest. Ecol Monogr 62:315–344

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defences in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Dalling JW, Winter K, Nason JD, Hubbell SP, Murawski DA, Hamrick JL (2001) The unusual life history of Alseis blackiana: a shade-persistent pioneer tree. Ecology 82:933–945

    Google Scholar 

  • Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Annu Rev Ecol Syst 18:431–451

    Article  Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    Article  PubMed  CAS  Google Scholar 

  • Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911

    Article  CAS  Google Scholar 

  • Escudero A, del Arco JM, Sanz IC, Ayala J (1992) Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:80–87

    Article  Google Scholar 

  • Gentry AH (1988) Tree species richness of upper Amazonian forests. Proc Natl Acad Sci USA 85:156–159

    Article  PubMed  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Givnish TJ, Montgomery R, Goldstein G (2004) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses and whole-plant compensation points. Am J Bot 91:228–246

    Article  CAS  Google Scholar 

  • Grubb PJ (1998) A reassessment of the strategies of plants which cope with shortages of resources. Perspect Plant Ecol 1:3–31

    Article  Google Scholar 

  • Hawthorne WD (1995) Ecological profiles of Ghanaian forest trees. Oxford Forestry Institute. Tropical forestry papers no. 29. Nuffield Press, Oxon

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802

    Article  Google Scholar 

  • Hollander M, Wolfe DA (1999) Non-parametric statistical methods. Wiley, New York

    Google Scholar 

  • Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. For Ecol Manage 242:431–437

    Article  Google Scholar 

  • King DA (1994) Influence of light level on the growth and morphology of saplings in a Panamanian forest. Am J Bot 81:948–957

    Article  Google Scholar 

  • King DA (2003) Allocation of above-ground growth is related to light in temperate deciduous saplings. Funct Ecol 17:482–488

    Article  Google Scholar 

  • King DA, Davies SJ, Supardi MNN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453

    Article  Google Scholar 

  • King DA, Davies SJ, Tan S, Noor NSM (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680

    Article  Google Scholar 

  • Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428

    Article  Google Scholar 

  • Kitajima K, Bolker BM (2003) Testing performance rank reversals among coexisting species: crossover point irradiance analysis. Funct Ecol 17:276–281

    Article  Google Scholar 

  • Kobe RK (1997) Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80:226–233

    Article  Google Scholar 

  • Laurance WF, Oliveira AA, Laurance SG, Condit R, Nascimento HEM, Sanchez-Thorin AC, Lovejoy TE, Andrade A, D’Angelo S, Ribeiro JE, Dick CW (2004) Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171–175

    Article  PubMed  CAS  Google Scholar 

  • Liddell MJ, Nieullet N, Campoe OC, Freiberg M (2007) Assessing the above-ground biomass of a complex tropical rainforest using a canopy crane. Aust Ecol 32:43–58

    Article  Google Scholar 

  • Lieberman D, Lieberman M (1987) Forest tree growth and dynamics at La Selva, Costa Rica (1969–1982). J Trop Ecol 3:347–358

    Google Scholar 

  • Lusk CH (2002) Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oecologia 132:188–196

    Article  Google Scholar 

  • Lusk CH, Contreras O (1999) Foliage area and crown nitrogen turnover in temperate rain forest juvenile trees of differing shade tolerance. J Ecol 87:973–983

    Article  Google Scholar 

  • Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Vargas PN, Patino S, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Martinez RV, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591

    Article  Google Scholar 

  • Malhi Y, Phillips OL, Lloyd J, Baker T, Wright J, Almeida S, Arroyo L, Frederiksen T, Grace J, Higuchi N, Killeen T, Laurance WF, Leano C, Lewis S, Meir P, Monteagudo A, Neill D, Vargas PN, Panfil SN, Patino S, Pitman N, Quesada CA, Rudas-Ll A, Salomao R, Saleska S, Silva N, Silveira M, Sombroek WG, Valencia R, Martinez RV, Vieira ICG, Vinceti B (2002) An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J Veg Sci 13:439–450

    Article  Google Scholar 

  • Mooney HA, Gulman SL (1979) Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant population biology. Columbia University Press, New York, pp 316–317

    Google Scholar 

  • Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36:20–32

    Google Scholar 

  • Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecol Manage 117:149–167

    Article  Google Scholar 

  • Nogueira EM, Fearnside PM, Nelson BW, França MB (2007) Wood density in forests of Brazil's ‘arc of deforestation’: Implications for biomass and flux of carbon from land-use change in Amazonia. For Ecol Manage 248:119–135

    Google Scholar 

  • Pacala SW, Canham CD, Silander JA, Kobe RK (1994) Sapling growth as a function of resources in a north temperate forest. Can J For Res 24:2172–2183

    Article  Google Scholar 

  • Patiño S, Lloyd J, Paiva R, Quesada CA, Mercado LM, Baker TR, Czimczik CI, Schwarz M, Schmerler J, Sota A, Santos A, Horna V, Peacock J, Wagner M, Arroyo L, Almeida S, Alvarez E, Aguilar A, Bonal D, Gallo J, Herrera R, Higuchi N, Hoyos EJ, Jimenez EM, Killeen T, Leal E, Luizão F, Malhi Y, Meir P, Monteagudo A, Neill D, Núñez Vargas P, Palomino W, Peña-Cruz A, Peñuela MC, Phillips OL, Pitman NL, Priante Filho N, Prieto A, Panfil SN, Rudas A, Salomão R, Silva N, Silveira M, Lezama A, Turriago JD, Vásquez-Martínez R, Vieira I, Villanueva B, Vitzthum P (2008) Branch xylem density variation across the Amazon Basin. Biogeosci Discuss 5:2003–2047

  • Phillips OL, Martinez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Ceron C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    Article  PubMed  CAS  Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116:26–37

    Article  Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Article  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Poorter L, Bongers F, Sterck FJ, Wöll H (2005) Beyond the regeneration phase: differentiation of height-light trajectories among tropical tree species. J Ecol 93: 256-267

    Google Scholar 

  • Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301

    Article  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Uhl C (1995) Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Funct Ecol 9:65–76

    Article  Google Scholar 

  • Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Bushena C (1998) Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol 12:327–338

    Article  Google Scholar 

  • Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86:16–24

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Roderick ML, Berry SL (2001) Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol 149:473–485

    Article  Google Scholar 

  • Sack L, Grubb PJ (2001) Why do species of woody seedlings change rank in relative growth rate between low and high irradiance? Funct Ecol 15:145–154

    Article  Google Scholar 

  • Sack L, Grubb PJ (2003) Crossovers in seedling relative growth rates between low and high irradiance: analyses and ecological potential. Funct Ecol 17:281–287

    Article  Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550

    Article  PubMed  CAS  Google Scholar 

  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetation 75:81–86

    Article  Google Scholar 

  • Takyu M, Aiba S-I, Kitayama K (2003) Changes in biomass, productivity and decomposition along topographic gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia 134:397–404

    PubMed  Google Scholar 

  • ter Steege H, Hammond DS (2001) Character convergence, diversity, and disturbance in tropical rain forest in Guyana. Ecology 82:3197–3212

    Article  Google Scholar 

  • ter Steege H, Pitman N, Sabatier D, Castellanos H, Van der Hout P, Daly DC, Silveira M, Phillips O, Vasquez R, Van Andel T, Duivenvoorden J, De Oliveira AA, Ek R, Lilwah R, Thomas R, Van Essen J, Baider C, Maas P, Mori S, Terborgh J, Vargas PN, Mogollon H, Morawetz W (2003) A spatial model of tree alpha-diversity and tree density for the Amazon. Biodivers Conserv 12:2255–2277

    Article  Google Scholar 

  • ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prevost MF, Spichiger R, Castellanos H, von Hildebrand P, Vasquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  CAS  Google Scholar 

  • Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science 269:63–66

    Article  PubMed  CAS  Google Scholar 

  • Vásquez-Martínez R, Phillips OP (2000) Allpahuayo: floristics, structure and dynamics of a high diversity forest in Amazonian Peru. Ann Mo Bot Gard 87: 499-527

    Google Scholar 

  • Veenendaal EM, Swaine MD, Lecha RT, Walsh MF, Abebrese IK, Owusu-Afriyie K (1996) Responses of West African forest tree seedlings to irradiance and soil fertility. Funct Ecol 10:501–511

    Article  Google Scholar 

  • Vormisto J, Phillips OL, Ruokolainen K, Tuomisto H, Vasquez R (2000) A comparison of fine-scale distribution patterns of four plant groups in an Amazonian rainforest. Ecography 23:349–359

    Article  Google Scholar 

  • Walters MB, Reich PB (1996) Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology 77:841–853

    Article  Google Scholar 

  • Walters MB, Reich PB (2000) Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings. Funct Ecol 14:155–165

    Article  Google Scholar 

  • Walters MB, Kruger EL, Reich PB (1993) Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light-relationships with successional status and shade tolerance. Oecologia 94:7–16

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Whitmore TC (1989) Canopy gaps and the two major groups of forest trees. Ecology 70:536–538

    Article  Google Scholar 

  • Whitmore TC (1996) A review of some aspects of tropical rain forest seedling ecology with suggestions for further enquiry. In: Swaine MD (ed) The ecology of tropical forest tree seedlings, man and the biosphere series 17. UNESCO, Paris, pp 3–39

    Google Scholar 

  • Woodward FI, Cramer W (1996) Plant functional types and climatic changes: introduction. J Veg Sci 7:306–308

    Article  Google Scholar 

  • Wright EF, Coates D, Canham CD, Bartemucci P (1998) Species variability in growth responses to light across climatic regions in northwestern British Columbia. Can J For Res 28:871–886

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

  • Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003) Gap-dependent recruitment, realised vital rates, and size distributions of tropical trees. Ecology 84:3174–3185

    Article  Google Scholar 

  • Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D (2006) Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9:111–120

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the School of Geography, University of Leeds, for financial support. This work was partially funded by NERC grant NE/B503384/1. We also thank the Instituto de Investigaciones de la Amazonia Peruana (IIAP) and Explorama for logistical support and Jérôme Chave for use of the ρ data base. Oliver Phillips was supported by a NERC grant and by a Leverhulme Trust Research Fellowship and Tim Baker acknowledges funding from NERC fellowship NE/C517484/1 and a RCUK fellowship at the University of Leeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen C. Keeling.

Additional information

Communicated by Stephan Hättenschwiler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keeling, H.C., Baker, T.R., Martinez, R.V. et al. Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests. Oecologia 158, 521–534 (2008). https://doi.org/10.1007/s00442-008-1161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1161-4

Keywords

Navigation