Skip to main content
Log in

Temperature-dependent sex determination and global change: are some species at greater risk?

  • Population Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In species with temperature-dependent sex determination (TSD), global climate change may result in a strong sex ratio bias that could lead to extinction. The relationship between sex ratio and egg incubation at constant temperature in TSD species is characterized by two parameters: the pivotal temperature (P) and the transitional range of temperature that produces both sexes (TRT). Here, we show that the proportion of nests producing both sexes is positively correlated to the width of the TRT by a correlative approach from sex ratio data collected in the literature and by simulations of TSD using a mechanistic model. From our analyses, we predict that species with a larger TRT should be more likely to evolve in response to new thermal conditions, thus putting them at lower risk to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Bell G, Collins S (2008) Adaptation, extinction and global change. Evol Appl 1:3–16

    Article  Google Scholar 

  • Binckley CA, Spotila JR, Wilson KS, Paladino FV (1998) Sex determination and sex ratios of pacific leatherback turtles, Dermochelys coriacea. Copeia 2:291–300

    Article  Google Scholar 

  • Bowden RM, Ewert MA, Nelson CE (2000) Environmental sex determination in a reptile varies seasonally and with yolk hormones. Proc R Soc London B Biol Sci 267:1745–1749

    Article  CAS  Google Scholar 

  • Bowden RM, Harms HK, Paitz RT, Janzen FJ (2004) Does optimal egg size vary with demographic stage because of a physiological constraint? Funct Ecol 18:522–529

    Article  Google Scholar 

  • Bull JJ (1980) Sex determination in reptiles. Q Rev Biol 55:3–21

    Article  Google Scholar 

  • Bull JJ (1983) Environmental sex determination (ESD). Evolution of sex determining mechanisms. Benjamin-Cummings, Menlo Park, CA

  • Bull JJ (1985) Sex ratio and nest temperature in turtles: comparing field and laboratory data. Ecology 66:1115–1122

    Article  Google Scholar 

  • Bull JJ, Vogt RC (1979) Temperature-dependent sex determination in turtles. Science 206:1186–1188

    Article  PubMed  CAS  Google Scholar 

  • Bull JJ, Vogt RC, Bulmer MG (1982a) Heritability of sex ratio in turtles with environmental sex determination. Evolution 35:333–341

    Article  Google Scholar 

  • Bull JJ, Vogt RC, McCoy CJ (1982b) Sex determining temperatures in turtles: a geographic comparison. Evolution 36:13–26

    Article  Google Scholar 

  • Davenport J (1997) Temperature and the life-history strategies of sea turtles. J Therm Biol 22:479–488

    Article  Google Scholar 

  • De Souza RR, Vogt RC (1994) Incubation temperature influences sex and hatchling size in the neotropical turtle Podocnemis unifilis. J Herpetol 28:453–464

    Article  Google Scholar 

  • Delmas V, Prévot-Julliard A-C, Pieau C, Girondot M (2008) A mechanistic model of temperature-dependent sex determination in a Chelonian, the European pond turtle. Funct Ecol 22:84–93

    Google Scholar 

  • Demuth JP (2001) The effects of constant and fluctuating incubation temperatures on sex determination, growth, and performance in the tortoise Gopherus polyphemus. Can J Zool 79:1609–1620

    Article  Google Scholar 

  • Doody S, Guarino E, Georges A, Corey B, Murray G, Ewert MA (2006) Nest site choice compensates for climate effects on sex ratio in a lizard with environmental sex determination. Evol Ecol 20:307–330

    Article  Google Scholar 

  • Eendebak BT (1995) Incubation period and sex ratio of Hermann’s Tortoise. Chelonian Conserv Biol 1:227–231

    Google Scholar 

  • Etchberger CR, Ewert MA, Raper BA, Nelson CE (1992) Do low incubation temperatures yield females in painted turtles? Can J Zool 70:391–394

    Article  Google Scholar 

  • Ewert MA, Nelson CE (1991) Sex determination in turtles: diverse patterns and some possible adaptive values. Copeia 1:50–69

    Article  Google Scholar 

  • Ewert MA, Jackson DR, Nelson CE (1994) Patterns of temperature-dependent sex determination in turtles. J Exp Zool 270:3–15

    Article  Google Scholar 

  • Ewert MA, Etchberger CR, Nelson CE (2004a) Turtle sex-determination modes and TSD patterns, and some TSD pattern correlates. In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC, pp 21–32

    Google Scholar 

  • Ewert MA, Hatcher RE, Goode JM (2004b) Sex determination and ontogeny in Malacochersus tornieri, the Pancake tortoise. J Herpetol 38:291–295

    Article  Google Scholar 

  • Ewert MA, Lang JW, Nelson CE (2005) Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). J Zool Lond 265:81–95

    Article  Google Scholar 

  • Freedberg S, Wade MJ (2001) Cultural inheritance as a mechanism for population sex-ratio bias in reptiles. Evolution 55:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Georges A, Limpus CJ, Stoutjestjik R (1994) Hatchling sex in the marine turtle Caretta caretta is determined by proportion of development at a temperature, not daily duration of exposure. J Exp Zool 270:432–444

    Article  Google Scholar 

  • Georges A, Doody S, Beggs K, Young JE (2004) Thermal models of TSD under laboratory and field conditions. In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC, pp 79–89

    Google Scholar 

  • Georges A, Beggs K, Young JE, Doody S (2005) Modelling development of reptile embryos under fluctuating temperature regimes. Physiol Biochem Zool 78:18–30

    Article  PubMed  Google Scholar 

  • Girondot M (1999) Statistical description of temperature-dependent sex determination using maximum likelihood. Evol Ecol Res 1:479–486

    Google Scholar 

  • Girondot M, Delmas V, Rivalan P, Courchamp F, Prévot-Julliard A-C, Godfrey MH (2004) Implication of temperature-dependent sex determination for population dynamics. In: Valenzuela N, Bull JJ (eds) Temperature-dependent sex determination. Smithsonian Books, Washington, pp 148–155

    Google Scholar 

  • Glen F, Mrosovsky N (2004) Antigua revisited: the impact of climate change on sand and nest temperatures at a hawksbill turtle (Eretmochelys imbricata) nesting beach. Glob Chang Biol 10:2036–2045

    Article  Google Scholar 

  • Godfrey MH, Mrosovsky N (2006) Pivotal temperature for green turtles, Chelonia mydas, nesting in Suriname. Herpetol J 16:55–61

    Google Scholar 

  • Godfrey MH, Barreto R, Mrosovsky N (1996) Estimating past and present sex ratios of sea turtles in Suriname. Can J Zool 74:267–277

    Article  Google Scholar 

  • Godfrey MH, D’Amato AF, Marcovaldi MÂ, Mrosovsky N (1999) Pivotal temperature and predicted sex ratios for hatchling hawksbill turtles from Brazil. Can J Zool 77:1465–1473

    Article  Google Scholar 

  • Godfrey MH, Delmas V, Girondot M (2003) Assessment of patterns of temperature-dependent sex determination using maximum likelihood model selection. Ecoscience 10:265–272

    Google Scholar 

  • Gutzke WHN, Paukstis GL (1983) Influence of the hydric environment on sexual differentiation of turtles. J Exp Zool 226:467–469

    Article  PubMed  CAS  Google Scholar 

  • Hawkes LA, Broderick AC, Godfrey MH, Godley BJ (2007) Investigating the potential impacts of climate change on a marine turtle population. Glob Chang Biol 13:923–932

    Article  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  Google Scholar 

  • Hulin V, Girondot M, Godfrey MH, Guillon J-M (2008) Mixed and uniform brood sex ratio strategy in turtles: the facts, the theory and their consequences. In: Wyneken J, Bels V, Godfrey MH (eds) Turtles: from structures to strategies of life. CRC, Boca Raton, pp 279–300

    Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical basis. Contribution of Working Group I to the fourth assessment. Report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Janzen FJ (1992) Heritable variation for sex ratio under environmental sex determination in the common snapping turtle (Chelydra serpentina). Genetics 131:155–161

    PubMed  CAS  Google Scholar 

  • Janzen FJ (1994) Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci USA 91:7487–7490

    Article  PubMed  CAS  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Lang JW, Andrews HV (1994) Temperature-dependent sex determination in crocodilians. J Exp Zool 270:28–44

    Article  Google Scholar 

  • Lewis-Winokur V, Winokur RM (1995) Incubation temperature affects sexual differentiation, incubation time, and posthatchling survival in desert tortoise (Gopherus agassizi). Can J Zool 73:2091–2097

    Article  Google Scholar 

  • Limpus CJ, Reed PC, Miller JD (1985) Temperature dependent sex determination in Queensland sea turtles: intraspecific variation in Caretta caretta. In: Grigg G, Shine R, Ehmann H (eds) Biology of Australasian frogs and reptiles. Royal Zoological Society, Sydney, pp 343–351

    Google Scholar 

  • Marcovaldi MÂ, Godfrey MH, Mrosovsky N (1997) Estimating sex ratios of loggerhead turtles in Brazil from pivotal incubation durations. Can J Zool 75:755–770

    Article  Google Scholar 

  • Maxwell JA, Motara MA, Frank GH (1988) A micro-environmental study of the effect of temperature on the sex ratios of the loggerhead turtle, Caretta caretta, from Tongaland, Natal. S Afr J Zool 23:342–350

    Google Scholar 

  • McCoy CJ, Vogt RC, Censky EJ (1983) Temperature-controlled sex determination in the sea turtle Lepidochelys olivacea. J Herpetol 17:404–406

    Article  Google Scholar 

  • Miller D, Summers J, Silber S (2004) Environmental versus genetic sex determination: a possible factor in dinosaur extinction? Fertil Steril 81:954–964

    Article  PubMed  CAS  Google Scholar 

  • Morjan CL (2003a) How rapidly can maternal behavior affecting primary sex ratio evolve in a reptile with environmental sex determination? Am Nat 162:205–219

    Article  PubMed  Google Scholar 

  • Morjan CL (2003b) Variation in nesting patterns affecting nest temperatures in two populations of painted turtles (Chrysemys picta) with temperature-dependent sex determination. Behav Ecol Sociobiol 53:254–261

    Article  Google Scholar 

  • Mrosovsky N (1982) Sex ratio bias in hatchling sea turtles from artificially incubated eggs. Biol Conserv 23:309–314

    Article  Google Scholar 

  • Mrosovsky N (1988) Pivotal temperatures for loggerhead turtles (Caretta caretta) from northern and southern nesting beaches. Can J Zool 66:661–669

    Article  Google Scholar 

  • Mrosovsky N, Benabib M (1990) An assessment of 2 methods of sexing hatchling sea-turtles. Copeia 2:589–591

    Article  Google Scholar 

  • Mrosovsky N, Provancha J (1989) Sex ratio of loggerhead sea turtles hatching on a Florida beach. Can J Zool 67:2533–2539

    Article  Google Scholar 

  • Mrosovsky N, Provancha J (1992) Sex ratio of hatchling loggerhead sea turtles: data and estimates from a 5-year study. Can J Zool 70:530–538

    Article  Google Scholar 

  • Mrosovsky N, Dutton PH, Whitmore CP (1984a) Sex-ratios of two species of sea turtle nesting in Suriname. Can J Zool 62:2227–2239

    Article  Google Scholar 

  • Mrosovsky N, Hopkins-Murphy SR, Richardson JE (1984b) Sex ratios of sea turtles: seasonal changes. Science 225:739–741

    Article  PubMed  Google Scholar 

  • Mrosovsky N, Bass A, Corliss LA, Richardson JI, Richardson TH (1992) Pivotal and beach temperatures for hawksbill turtles nesting in Antigua. Can J Zool 70:1920–1925

    Article  Google Scholar 

  • Mrosovsky N, Baptistotte C, Godfrey MH (1999) Validation of incubation duration as an index of the sex ratio of hatchling sea turtles. Can J Zool 77:831–835

    Article  Google Scholar 

  • Mrosovsky N, Kamel SJ, Rees AF, Margaritoulis D (2002) Pivotal temperature for loggerhead turtles (Caretta caretta) from Kyparissia Bay, Greece. Can J Zool 80:2118–2124

    Article  Google Scholar 

  • Nelson NJ, Thompson MB, Pledger S, Keall SN, Daugherty CH (2004) Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming? Int Congr Ser 1275:250–257

    Article  Google Scholar 

  • Packard GC, Packard MJ, Birchard GF (1989) Sexual-differentiation and hatching success by painted turtles incubating in different thermal and hydric environments. Herpetologica 45:385–392

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pertoldi C, Bach LA (2007) Evolutionary aspects of climate-induced changes and the need for multidisciplinarity. J Therm Biol 32:118–124

    Article  Google Scholar 

  • Pieau C (1971) Sur la proportion sexuelle chez les embryons de deux Chéloniens (Testudo graeca L. et Emys orbicularis L.) issues d’oeufs incubés articifiellement. C R Acad Sci Paris 272:3071–3074

    CAS  Google Scholar 

  • Pieau C (1972) Effets de la température sur le développement des glandes génitales chez les embryons de deux chéloniens, Emys orbicularis L. et Testudo graeca L. C R Acad Sci Paris 274:719–722

    CAS  Google Scholar 

  • Pieau C (1975) Temperature and sex differentiation in embryos of two Chelonians, Emys orbicularis L. and Testudo graeca L. In: Reinboth R (ed) Intersexuality in the Animal Kingdom. Springer, New York, pp 332–339

  • Pieau C (1982) Modalities of the action of temperature on sexual differentiation in field-developing embryos of the European pond turtle Emys orbicularis (Emydidae). J Exp Zool 220:353–360

    Article  Google Scholar 

  • Pieau C, Girondot M, Desvages G, Dorizzi M, Richard-Mercier N, Zaborski P (1994) Environmental control of gonadal differentiation. In: Short RV, Balaban E (eds) The differences between the sexes. Cambridge University Press, Cambridge, pp 433–448

    Google Scholar 

  • Pieau C, Dorizzi M, Richard-Mercier N, Desvages G (1999) Sexual differentiation of gonads as a function of temperature in the turtle Emys orbicularis: Endocrine function, intersexuality and growth. J Exp Zool 281:400–408

    Article  Google Scholar 

  • Raynaud A, Pieau C (1985) Embryonic development of the genital system. In: Gans C, Billett FS (eds) Biology of the reptilia. Wiley, New York, pp 149–300

    Google Scholar 

  • Rhen T, Lang JW (1998) Among-family variation for environmental sex determination in reptiles. Evolution 52:1514–1520

    Article  Google Scholar 

  • Rimblot F, Fretey J, Mrosovsky N, Lescure J, Pieau C (1985) Sexual differentiation as a function of the incubation temperature of eggs in the sea-turtle Dermochelys coriacea (Vandelli, 1761). Amphib-Reptil 6:83–92

    Article  Google Scholar 

  • Rimblot-Baly F, Lescure J, Fretey J, Pieau C (1987) Sensibilité à la température de la différenciation sexuelle chez la tortue luth, Dermochelys coriacea (Vandelli, 1761); application des données de l’incubation artificielle à l’étude de la sex-ratio dans la nature. Ann Sci Nat Zool Paris 8:277–290

    Google Scholar 

  • Spotila JR et al (1994) Effects of incubation conditions on sex determination, hatching success, and growth of hatchling desert tortoises, Gopherus agassizii. Herpetol Monogr 8:103–116

    Article  Google Scholar 

  • Stainforth D et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  PubMed  CAS  Google Scholar 

  • Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun Stat A 7:13–26

    Article  Google Scholar 

  • Vaillant S, Dorizzi M, Pieau C, Richard-Mercier N (2001) Sex reversal and aromatase in chicken. J Exp Zool 290:727–740

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela N (2001) Constant, shift, and natural temperature effects on sex determination in Podocnemis expansa turtles. Ecology 82:3010–3024

    Google Scholar 

  • Valenzuela N (2004) Introduction. In: Valenzuela N, Lance VA (eds) Temperature-dependent sex determination in vertebrates, vol 1. Smithsonian Books, Washington, DC, pp 1–4

    Google Scholar 

  • Valenzuela N, Botero R, Martinez E (1997) Field study of sex determination in Podocnemis expansa from Colombian Amazonia. Herpetologica 53:390–398

    Google Scholar 

  • Viets BE, Ewert MA, Talent G, Nelson CE (1994) Sex-determining mechanisms in squamate reptiles. J Exp Zool 270:45–56

    Article  Google Scholar 

  • Vogt RC, Flores Villela O (1992) Effects of incubation temperature on sex determination in a community of Neotropical freshwater turtles in southern Mexico. Herpetologica 48:265–270

    Google Scholar 

  • Walther G-R et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Weishampel J, Bagley DA, Ehrhart LM, Rodenbeck B (2003) Spatiotemporal patterns of annual sea turtle nesting behaviors along an East Central Florida beach. Biol Conserv 110:295–303

    Article  Google Scholar 

  • Whitmore CP, Dutton PH, Mrosovsky N (1985) Sexing of hatchling sea turtles—gross appearance versus histology. J Herpetol 19:430–431

    Article  Google Scholar 

  • Wibbels T, Killebrew FC, Crews D (1991) Sex determination in Cagle’s map turtle: implications for evolution, development, and conservation. Can J Zool 69:2693–2696

    Article  Google Scholar 

  • Wibbels T, Rostal DC, Byles R (1998) High pivotal temperature in the sex determination of the olive ridley sea turtle, Lepidochelys olivacea, from Playa Nancite, Costa Rica. Copeia 1998:1086–1088

  • Yntema CL, Mrosovsky N (1982) Critical periods and pivotal temperatures for sexual differentiation in loggerhead sea turtles. Can J Zool 60:1012–1016

    Article  Google Scholar 

  • Zwiers FW (2002) The 20-year forecast. Nature 416:690–691

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Allen Foley, Brendan Godley, Marion Hulin and two anonymous reviewers for valuable comments. This work complies with the current laws of the country in which it has been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Hulin.

Additional information

Communicated by Herwig Leirs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulin, V., Delmas, V., Girondot, M. et al. Temperature-dependent sex determination and global change: are some species at greater risk?. Oecologia 160, 493–506 (2009). https://doi.org/10.1007/s00442-009-1313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1313-1

Keywords

Navigation