Skip to main content

Advertisement

Log in

Tree growth response along an elevational gradient: climate or genetics?

  • Global change ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affolter P, Büntgen U, Esper J, Rigling A, Weber P, Luterbacher J, Frank D (2010) Inner Alpine conifer response to 20th century drought swings. Eur J For Res 129:289–298. doi:10.1007/s10342-009-0327-x

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg (Ted) EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. doi:10.1002/joc.1377

    Article  Google Scholar 

  • Babst F, Poulter B, Trouet V, Kun T, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank DC (2013) Site- and species-specific responses of forest growth to climate across the European continent. Global Ecol Biogeogr 22:706–717. doi: 10.1111/geb.12023

    Google Scholar 

  • Bigler C, Veblen TT (2009) Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos 118:1130–1138. doi:10.1111/j.1600-0706.2009.17592.x

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2005) Growth/climate response shift in a long subalpine spruce chronology. Trees 20:99–110. doi:10.1007/s00468-005-0017-3

    Article  Google Scholar 

  • Büntgen U, Bellwald I, Kalbermatten H, Schmidhalter M, Frank DC, Freund H, Bellwald W, Neuwirth B, Nusser M, Esper J (2006a) 700 years of settlement and building history in the Lotschental, Switzerland. Erdkunde 60:96–112

    Article  Google Scholar 

  • Büntgen U, Frank DC, Nievergelt D, Esper J (2006b) Summer Temperature Variations in the European Alps, a.d. 755–2004. J Clim 19:5606–5623. doi:10.1175/JCLI3917.1

    Article  Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner K-U, Wanner H, Luterbacher J, Esper J (2011) 2500 years of european climate variability and human susceptibility. Science 331:578–582. doi:10.1126/science.1197175

    Article  PubMed  Google Scholar 

  • Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–872. doi:10.1111/j.1469-8137.2006.01703.x

    Article  PubMed  Google Scholar 

  • CH2011 (2011) Swiss Climate Change Scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zürich

    Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree ring standardization. Dissertation, University of Arizona, Tucson

  • Courbaud B, Kunstler G, Morin X, Cordonnier T (2011) What is the future of the ecosystem services of the Alpine forest against a backdrop of climate change? J Alp Res 98-4. doi:10.4000/rga.1317

    Google Scholar 

  • Donnelly A, Caffarra A, Kelleher CT, ONeill BF, Diskin E, Pletsers A, Proctor H, Stirnemann R, OHalloran J, Peuelas J, Hodkinson TR, Sparks TH (2012) Surviving in a warmer world: environmental and genetic responses. Clim Res 53:245–262. doi:10.3354/cr01102

    Article  Google Scholar 

  • Ebell IF, Schmidt RF (1964) Meteorological factors affecting conifer pollen dispersal on Vancouver Island. Publication 1036, Canadian Department of Forestry, Ottawa, Ontario

  • Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32:178–187. doi:10.1093/treephys/tps004

    Article  PubMed  Google Scholar 

  • Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc London Ser B 274:671–679. doi:10.1098/rspb.2006.0191

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107–121. doi:10.1016/j.dendro.2005.02.004

    Article  Google Scholar 

  • Frank DC, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–530. doi:10.1038/nature08769

    Article  PubMed  CAS  Google Scholar 

  • Goldblum D (2010) The geography of white oak’s (Quercus alba L.) response to climatic variables in North America and speculation on its sensitivity to climate change across its range. Dendrochronologia 28:73–83. doi:10.1016/j.dendro.2009.07.001

    Article  Google Scholar 

  • Gugerli F, Sperisen C, Büchler U, Magni F, Geburek T, Jeandroz S, Senn J (2001) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps. Mol Ecol 10:1255–1263. doi:10.1046/j.1365-294X.2001.01279.x

    Article  PubMed  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. doi:10.1038/nature09670

    Article  PubMed  CAS  Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683. doi:10.1016/j.tplants.2010.09.002

    Article  PubMed  CAS  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Isoda K, Watanabe A (2006) Isolation and characterization of microsatellite loci from Larix kaempferi. Mol Ecol Notes 6:664–666. doi:10.1111/j.1471-8286.2006.01291.x

    Article  CAS  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi:10.1111/j.1461-0248.2005.00796.x

    Article  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174. doi:10.1111/j.1365-2486.2006.01250.x

    Article  Google Scholar 

  • Kagawa A, Sugimoto A, Maximov TC (2006) Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytol 171:793–804

    Article  PubMed  CAS  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  • Khasa PD, Newton CH, Rahman MH, Jaquish B, Dancik BP (2000) Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43:439–448. doi:10.1139/g99-131

    Article  PubMed  CAS  Google Scholar 

  • King G, Fonti P, Nievergelt D, Büntgen U, Frank D (2013) Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agric For Meteorol 168:36–46. doi:10.1016/j.agrformet.2012.08.002

    Article  Google Scholar 

  • Körner C (2007a) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324. doi:10.3112/erdkunde.2007.04.02

    Article  Google Scholar 

  • Körner C (2007b) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574. doi:10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed  CAS  Google Scholar 

  • McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098. doi:10.1890/04-1036

    Article  Google Scholar 

  • Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233. doi:10.1093/treephys/tpp108

    Article  PubMed  Google Scholar 

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21:69–78. doi:10.1078/1125-7865-00040

    Article  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163. doi:10.1111/j.1466-8238.2007.00357.x

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Pasho E, Camarero JJ, De Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric For Meteorol 151:1800–1811. doi:10.1016/j.agrformet.2011.07.018

    Article  Google Scholar 

  • Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arct Antarct Alp Res 32:14–20

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419. doi:10.1139/g97-055

    Article  PubMed  CAS  Google Scholar 

  • Pluess AR (2011) Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Mol Ecol 20:473–485. doi:10.1111/j.1365-294X.2010.04972.x

    Article  PubMed  Google Scholar 

  • Rossi S, Anfodillo T, Menardi R (2006) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89

    Article  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619. doi:10.1146/annurev.ecolsys.38.091206.095646

    Article  Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment dendroecology. Haupt, Switzerland

    Google Scholar 

  • Scotti Magni, Paglia Morgante (2002) Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor Appl Genet 106:40–50. doi:10.1007/s00122-002-0986-1

    PubMed  CAS  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. doi:10.1111/j.1461-0248.2006.00889.x

    Article  PubMed  Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206. doi:10.2307/2641390

    Article  Google Scholar 

  • Tollefsrud MM, Sønstebø JH, Brochmann C, Johnsen Ø, Skrøppa T, Vendramin GG (2009) Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102:549–562. doi:10.1038/hdy.2009.16

    Article  PubMed  CAS  Google Scholar 

  • Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of subalpine trees in the Colorado front range. Ecology 75:1450–1462. doi:10.2307/1937468

    Article  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc Lond Ser B 275:649–659. doi:10.1098/rspb.2007.0997

    Article  Google Scholar 

  • Williams CG (2009) Conifer reproductive biology. Springer, Berlin

    Book  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497. doi:10.1038/nature11014

    PubMed  CAS  Google Scholar 

  • Wright S (1950) The genetical structure of populations. Anal Eugen 15:323–354. doi:10.1111/j.1469-1809.1949.tb02451.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by a Swiss National Science Foundation project (no. 121859, INTEGRAL) and NCCR Climate (DE-TREE). We thank: Andrea Plüss, Christoph Sperisen, Pim van der Knaap, Sabine Brodbeck, Daniela Csencsics, Tabea Turrini, Andreas Koller and Anja Gall for existing genetic data and processing the new samples in this study; Stefan Bechet, Anne Verstege, Daniel Nievergelt, Flurin Babst, Ulf Büntgen, Kerstin Treydte for helping with the collection and processing of tree-ring data; Ben Poulter for the gridded climate data; and all of the above for discussion.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory M. King.

Additional information

Communicated by Tim Seastedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, G.M., Gugerli, F., Fonti, P. et al. Tree growth response along an elevational gradient: climate or genetics?. Oecologia 173, 1587–1600 (2013). https://doi.org/10.1007/s00442-013-2696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2696-6

Keywords

Navigation