Skip to main content
Log in

Indirect human impacts turn off reciprocal feedbacks and decrease ecosystem resilience

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Creek bank salt marsh die-off is a conservation problem in New England, driven by predator depletion, which releases herbivores from consumer control. Many marshes, however, have begun to recover from die-off. We examined the hypothesis that the loss of the foundation species Spartina alterniflora has decreased facilitator populations, weakening reciprocal positive plant/animal feedbacks, resilience, and slowing recovery. Field surveys and experiments revealed that loss of Spartina leads to decreased biodiversity, and increased mortality and decreased growth of the ribbed mussel Geukensia demissa, a key facilitator of Spartina. Experimental addition of Geukensia facilitators to creek banks accelerated Spartina recovery, showing that their loss limits recovery and the reciprocal feedbacks that drive community resilience. Reciprocal positive feedbacks involving foundation species, often lost to human impacts, may be a common, but generally overlooked mechanism of ecosystem resilience, making their reestablishment a valuable restoration tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am Nat 169:195–206

    Article  PubMed  Google Scholar 

  • Altieri AH, Bertness MD, Coverdale TC, Herrmann NC, Holdredge C (2012) A trophic cascade triggers collapse of a salt marsh ecosystem with intensive recreational fishing. Ecology 93:1402–1410

    Article  PubMed  Google Scholar 

  • Altieri AH, Bertness MD, Coverdale TC, Axelman EE, Herrmann NC, Szathmary PL (2013) Facilitation drives the resilience of salt marshes and rapid reversal of die-off. Ecology 94:1647–1657

    Article  PubMed  Google Scholar 

  • Angelini CH, Altieri AH, Silliman BR, Bertness MD (2011) Interactions among foundation species and their consequences for community organization, biodiversity and conservation. Bioscience 61:782–789

    Article  Google Scholar 

  • Beisner BE, Haydon DT, Cuddington K (2003) Alternative stable states in ecology. Front Ecol Environ 1:376–382

    Article  Google Scholar 

  • Bertness MD (1984) Ribbed mussels and Spartina alterniflora production in a New England salt marsh. Ecology 65:1794–1807

    Article  Google Scholar 

  • Bertness MD (1985) Fiddler crab regulation of Spartina alterniflora production on a New England salt marsh. Ecology 66:1042–1055

    Article  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bertness MD, Coverdale TC (2013) Compensatory predation by green crabs facilitate the recovery of New England salt marshes. Ecology 9:1937–1943

    Article  Google Scholar 

  • Bertness MD, Ellison AM (1987) Determinants of pattern in a New England salt marsh plant community. Ecol Monograph 57:129–147

    Article  Google Scholar 

  • Bertness MD, Grosholz T (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67:192–204

    Article  Google Scholar 

  • Bertness MD, Trussell G, Ewanchuk P, Silliman BR (2002) Do alternate community stable states exist in the Gulf of Maine rocky intertidal zone? Ecology 83(3):3434–3448

    Article  Google Scholar 

  • Bertness MD, Brisson CP, Bevil MC, Crotty SM (2014a) Herbivory drives the spread of salt marsh die-off. PLoS One 9(3):e92916. doi:10.1371/journal.pone.0092916

    Article  PubMed Central  PubMed  Google Scholar 

  • Bertness MD, Brisson CP, Coverdale TC, Bevil MC, Crotty SM, Suglia ER (2014b) Experimental predator removal causes rapid salt marsh die-off. Ecol Lett 17:830–835

    Article  PubMed Central  PubMed  Google Scholar 

  • Biggs R, Carpenter SR, Brock WA (2009) Turning back from the brink: detecting an impending regime shift in time to avert it. Proc Natl Acad Sci 106:826–831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bozec YM, Yakob L, Bejarano S, Mumby PJ (2013) Reciprocal facilitation and non-linearity maintain habitat engineering on coral reefs. Oikos 122:428–440

    Article  Google Scholar 

  • Brook BW, Ellis EC, Perring MP, Mackay AW, Blomqvist L (2013) Does the terrestrial biosphere have planetary tipping points? Trends Ecol Evol 28:396–401

    Article  PubMed  Google Scholar 

  • Byers JE, Cuddington K, Jones CG, Talley TS, Hastings A, Lambrinos JG, Crooks JA, Wilson W (2006) Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 21:493–500

    Article  PubMed  Google Scholar 

  • Carpenter SR, Folke C, Scheffer M, Westley F (2009) Resilience: accounting for the noncomputable. Ecol Soc 14:13

    Google Scholar 

  • Côté IM, Darling ES (2010) Rethinking ecosystem resilience in the face of climate change. PLoS Biol 8(7):e1000438. doi:10.1371/journal.pbio.1000438

    Article  PubMed Central  PubMed  Google Scholar 

  • Coverdale TC, Axelman EE, Brisson CP, Young EW, Altieri AH, Bertness MD (2013) New England salt marsh recovery: opportunistic colonization of an invasive species and its non-consumptive effects. PLoS One 8:e73823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coverdale TC, Young EW, Brisson CP, Donnelly JP, Bertness MD (2014) Decades of die-off reverse centuries of carbon sequestration and salt marsh accretion. PLoS One 9. doi:10.1371/journal.pone.0093296

  • Didham RK, Watts CH, Norton DA (2005) Are systems with strong underlying abiotic regimes more likely to exhibit alternative stable states? Oikos 110:409–416

    Article  Google Scholar 

  • Eklöf JS, van der Heide T, Donadi S, van der Zee EM, O’Hara R, Eriksson BK (2011) Habitat-mediated facilitation and counteracting ecosystem engineering interactively influence ecosystem responses to disturbance. PLoS One 6(8):e23229

    Article  PubMed Central  PubMed  Google Scholar 

  • Fagre DB, Charles CW, Allen CD, Birkeland C, Chapin FS III, Groffman PM, Guntenspergen GR, Knapp AK, McGuire AD, Mulholland PJ, Peters DPC, Roby DD, Sugihara G (2009) Thresholds of climate change in ecosystems. US Geological Survey, Department of the Interior, Washington, DC

    Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Syst 35:557–581

    Article  Google Scholar 

  • Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockström J (2010) Resilience thinking: integrating resilience adaptability and transformability. Ecol Soc 15:20

    Google Scholar 

  • Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439

    Article  Google Scholar 

  • Halpern BS, Silliman BR, Olden JD, Bruno JP, Bertness MD (2007) Incorporating positive interactions in aquatic restoration and conservation. Front Ecol Environ 5:153–160

    Article  Google Scholar 

  • He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing environmental stress. Ecol Lett 16:695–706

    Article  PubMed  Google Scholar 

  • He Q et al (2014) Economic development and coastal ecosystem change in China. Nat Sci Rep 4:5995. doi:10.1038/srep05995

    CAS  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Howes BL, Dacey JWH, Goehringer DD (1986) Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen and salinity. J Ecol 74:881–898

    Article  Google Scholar 

  • Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386

    Article  PubMed  Google Scholar 

  • Ibelings BW, Portielje R, Lammens E, Noordhuis R, van den Berg MS, Joosse W, Meijer ML (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10:4–16

    Article  CAS  Google Scholar 

  • Jost J, Helmuth B (2007) Morphological and ecological determinants of body temperature of Geukensia demissa, the Atlantic ribbed mussel, and their effects on mussel mortality. Biol Bull 213:141–151

    Article  PubMed  Google Scholar 

  • Konar B, Estes JA (2003) The stability of boundary regions between kelp beds and deforested areas. Ecology 84:174–185

    Article  Google Scholar 

  • Lewontin RC (1969) The meaning of stability. Brookhaven Symp Biol 22:13–23

    CAS  PubMed  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  CAS  PubMed  Google Scholar 

  • McGlathery KJ, Reidenbach MA, D’Odorico P, Fagherazzi S, Pace ML, Porter JH (2013) Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26:220–231

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends. World Bank, Washington, DC

    Google Scholar 

  • Montague CL (1980) A natural history of temperate western Atlantic fiddler crabs (genus Uca) with reference to their impact on the salt marsh. Contrib Mar Sci 23:25–55

    CAS  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  CAS  PubMed  Google Scholar 

  • Nyström M, Norström AV, Blenckner T, de la Torre-Castro M, Eklöf JS, Folke C, Österblom H, Steneck RS, Thyresson M, Troell M (2012) Confronting feedbacks of degraded marine ecosystems. Ecosystems 15:695–710

    Article  Google Scholar 

  • Petraitis P (2013) Multiple stable states in natural ecosystems. Oxford University Press, New York

    Google Scholar 

  • Petraitis PS, Dudgeon SR (1999) Experimental evidence for the origin of alternative communities on rocky intertidal shores. Oikos 84:239–245

    Article  Google Scholar 

  • Petraitis PS, Latham RE (1999) The importance of scale in testing the origins of alternative community states. Ecology 80:429–442

    Article  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M (2009) Critical transitions in nature and society. Princeton University Press, Princeton

    Google Scholar 

  • Scheffer M, Carpenter SR, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W et al (2012) Anticipating critical transitions. Science 338:344–348

    Article  CAS  PubMed  Google Scholar 

  • Sudding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends Ecol Evol 24:271–279

    Article  Google Scholar 

  • Sudding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Front Ecol Environ 19:46–53

    Google Scholar 

  • Valiela I, Teal JM (1974) Nutrient limitation in salt marsh vegetation. In: Reimold RJ, Queen WH (eds) Ecology of halophytes. Academic Press, New York, pp 547–563

    Chapter  Google Scholar 

  • van de Koppel J, Bouma TJ, Herman PMJ (2012) The influence of local- and landscape-scale processes on spatial self-organization in estuarine ecosystems. J Exp Biol 215:962–967

    Article  PubMed  Google Scholar 

  • van de Koppel J, Herman PHJ, Thoolen P, Heip CHR (2001) Do alternate stable states occur in natural ecosystems? Evidence from tidal flats. Ecology 82:3449–3461

    Article  Google Scholar 

  • van der Heide T, van Nes EH, Geerling GW, Smolders AJP, Bouma TJ, van Katwijk M (2007) Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322

    Article  Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Bevil and E. Suglia for assistance in the field and D. Sax, C. Peterson and anonymous reviewers for comments on the manuscript. This research was made possible by grant NSF BIO OCE-0927090 and the Brown University Undergraduate Teaching and Research Award Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Bertness.

Additional information

Communicated by Pete Peterson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertness, M.D., Brisson, C.P. & Crotty, S.M. Indirect human impacts turn off reciprocal feedbacks and decrease ecosystem resilience. Oecologia 178, 231–237 (2015). https://doi.org/10.1007/s00442-014-3166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3166-5

Keywords

Navigation