Skip to main content
Log in

Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Herbivorous spider mites occurring on tomato plants (Solanum lycopersicum L.) cope with plant defences in various manners: the invasive Tetranychus evansi reduces defences below constitutive levels, whereas several strains of T. urticae induce such defences and others suppress them. In the Mediterranean region, these two species co-occur on tomato plants with T. ludeni, another closely related spider mite species. Unravelling how this third mite species affects plant defences is thus fundamental to understanding the outcome of herbivore interactions in this system. To test the effect of T. ludeni on tomato plant defences, we measured (1) the activity of proteinase inhibitors, indicating the induction of plant defences, in those plants, and (2) mite performance on plants previously infested with each mite species. We show that the performance of T. evansi and T. ludeni on plants previously infested with T. ludeni or T. evansi was better than on clean plants, indicating that these two mite species down-regulate plant defences. We also show that plants attacked by these mite species had lower activity of proteinase inhibitors than clean plants, whereas herbivory by T. urticae increased the activity of these proteins and resulted in reduced spider mite performance. This study thus shows that the property of down-regulation of plant defences below constitutive levels also occurs in T. ludeni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agrawal AA (2000) Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89:493–500

    Article  Google Scholar 

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Alba JM, Glas JJ, Schimmel BCJ, Kant M (2011) Avoidance and suppression of plant defenses by herbivores and pathogens. J Plant Interact 6:221–227

    Article  Google Scholar 

  • Alba JM, Schimmel BCJ, Glas JJ et al (2015) Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. New Phytol 205:828–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali JC, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  PubMed  CAS  Google Scholar 

  • Ament K, Kant MR, Sabelis MW et al (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:25–2037

    Article  Google Scholar 

  • Baldwin IT, Preston CA (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145

    Article  CAS  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using S4 classes. http://CRAN.R-project.org/package=lme4

  • Belliure B, Janssen A, Maris PC et al (2005) Herbivore arthropods benefit from vectoring plant viruses. Ecol Lett 8:70–79

    Article  Google Scholar 

  • Belliure B, Sabelis MW, Janssen A (2010) Vector and virus induce plant responses that benefit a non-vector herbivore. Basic Appl Ecol 11:162–169

    Article  Google Scholar 

  • Boubou A, Migeon A, Roderick GK et al (2012) Test of colonisation scenarios reveals complex invasion history of the red tomato spider mite Tetranychus evansi. PLoS ONE 7:e35601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Broadway R, Duffey S (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:827–833

    Article  CAS  Google Scholar 

  • Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272

    Article  PubMed  CAS  Google Scholar 

  • de Moraes GJ, McMurtry JA (1985) Comparison of Tetranychus evansi and T. urticae (Acari: Tetranychidae) as prey for eight species of Phytoseiid mites. Entomophaga 30:393–397

    Article  Google Scholar 

  • de Oliveira EF, Pallini A, Janssen A (2015) Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia. doi:10.1007/s00442-015-3344-0

    Google Scholar 

  • Denno RF, McClure MS, Ott JR (1995) Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu Rev Entomol 40:297–331

    Article  CAS  Google Scholar 

  • Dermauw W, Wybouw N, Rombauts S et al (2013) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc Natl Acad Sci USA 110:113–122

    Article  Google Scholar 

  • Dicke M (1994) Local and systemic production of volatile herbivore-induced terpenoids: their role in plant carnivore mutualism. J Plant Physiol 143:465–472

    Article  CAS  Google Scholar 

  • Ferragut F, Garzón-Luque E, Pekas A (2013) The invasive spider mite Tetranychus evansi (Acari: Tetranychidae) alters community composition and host-plant use of native relatives. Exp Appl Acarol 60:321–341

    Article  PubMed  Google Scholar 

  • Glas J, Alba JM, Simoni S et al (2014) Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biol 12:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Rev Phytopathol 43:205–227

    Article  CAS  Google Scholar 

  • Gotoh T, Moriya D, Nachman G (2015) Development and reproduction of five Tetranychus species (Acari: Tetranychidae): Do they all have the potential to become major pests? Exp Appl Acarol 66:453–479

    Article  PubMed  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Haegeman A, Mantelin S, Jones JT, Gheysen G (2012) Functional roles of effectors of plant-parasitic nematodes. Gene 492:19–31

    Article  PubMed  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, Berkeley

    Google Scholar 

  • Kakade ML, Rachis JJ, McGhee JE, Puski G (1974) Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem 51:376–382

    CAS  Google Scholar 

  • Kant MR, Baldwin IT (2007) The ecogenetics and ecogenomics of plant-herbivore interactions: rapid progress on a slippery road. Curr Opin Genet Devel 17:519–524

    Article  CAS  Google Scholar 

  • Kant MR, Ament K, Sabelis MW et al (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kant MR, Sabelis MW, Haring MA, Schuurink RC (2008) Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proc R Soc Lond B 275:443–452

    Article  CAS  Google Scholar 

  • Kant MR, Jonckheere W, Knegt B et al (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot 115:1015–1051

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33:641–664

    Article  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. Interspecific interactions. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Karban R, Carey JR (1984) Induced resistance of cotton seedlings to mites. Science 225:53–54

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Myers JH (1989) Induced plant responses to herbivory. Annu Rev Ecol Syst 20:331–348

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawrence SD, Novak NG, Ju CJT, Cooke JE (2008) Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J Chem Ecol 34:1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Li C, Williams MM, Loh YT et al (2002) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130:494–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuda T, Fukumoto C, Hinomoto N, Gotoh T (2013) DNA-based identification of spider mites: molecular evidence for cryptic species of the genus Tetranychus (Acari: Tetranychidae). J Econ Entomol 106:463–472

    Article  PubMed  CAS  Google Scholar 

  • Migeon A, Nouguier E, Dorkeld F (2011) Spider mites web: a comprehensive database for the Tetranychidae. Trends in Acarology. Springer, Dordrecht, pp 557–560

    Chapter  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H et al (2002) Herbivory: caterpillar saliva beats plant defences: a new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416:599–600

    Article  PubMed  CAS  Google Scholar 

  • Ozawa R, Arimura GI, Takabayashi J et al (2000) Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398

    Article  PubMed  CAS  Google Scholar 

  • Pallini A, Janssen A, Sabelis MW (1997) Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110:179–185

    Article  Google Scholar 

  • Poelman EH, Dicke M (2014) Plant-mediated interactions among insects within a community ecological perspective. In: Voelckel C, Jander G (eds) Annual plant reviews 47: Insect plant interactions. Wiley, New York, pp 309–338

    Chapter  Google Scholar 

  • Poelman EH, Broekgaarden C, Van Loon JJA, Dicke M (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365

  • Reddy GVP (2001) Comparative effectiveness of an integrated pest management system and other control tactics for managing spider mite Tetranychus ludeni (Acari: Tetranychidae) on eggplant. Exp Appl Acarol 25:985–992

    Article  PubMed  CAS  Google Scholar 

  • Reddy GVP (2002) Plant volatiles mediate orientation and plant preference by the predator Chrysoperlacarnea Stephens (Neuroptera: Chrysopidae). Biol Control 25:49–55

    Article  CAS  Google Scholar 

  • Reddy GVP, Baskaran P (2006) Damage potential of Tetranychus ludeni Zacher (Acari: Tetranychidae) on four varieties of eggplant, Solanum melongena L. Int J Trop Insect Sci 26:48–56

    Article  Google Scholar 

  • Rostás M, Hilker M (2002) Feeding damage by larvae of the mustard leaf beetle deters conspecific females from oviposition and feeding. Entmol Exp Appl 103:267–277

    Article  Google Scholar 

  • Sarmento RA, Lemos F, Bleeker PM et al (2011a) A herbivore that manipulates plant defence. Ecol Lett 14:229–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarmento RA, Lemos F, Dias CR et al (2011b) A herbivorous mite down-regulates plant defence and produces web to exclude competitors. PLoS ONE 6(1–7):e23757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauge MH, Mus F, Lacroze JP et al (2006) Genotypic variation in induced resistance and induced susceptibility in the peach–Myzus persicae aphid system. Oikos 113:305–313

    Article  Google Scholar 

  • Silva RS, Ribeiro FR, Queiroz OS et al (2015) Trypsin protease inhibitor activity is not a good proxy for defence against Oligonychus ilicis (Acari: Tetranychidae) in Coffea canephora (Gentianales: Rubiaceae). Int J Acarol 41:189–194

    Article  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  PubMed  CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Whitlock MC (1996) The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am Nat 148:S65–S77

    Article  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Wybouw N, Zhurov V, Martel C et al (2015) Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Mol Ecol. doi:10.1111/mec.13330

    PubMed  Google Scholar 

  • Zangerl AR, Bazzaz FA (1992) Theory and pattern in plant defense allocation. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. University of Chicago Press, Chicago, pp 363–391

    Google Scholar 

  • Zhao Y, Thilmony R, Bender CL et al (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Bi JL, Liu TX (2005) Molecular strategies of plant defense and insect counter-defense. Insect Sci 12:3–15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Felipe Lemos for sending mite strains from Amsterdam, Flore Zélé for all the improvements of the greenhouse facilities, and genetic identification of spider mites, Inês Santos for taking care of plants and mite populations and the whole mite squad (FZ, IS, Leonor Rodrigues, Ana Rita Ponce, Gonçalo Matos and Salomé Clemente) for stimulating discussions. DG thanks Cristina Branquinho for logistic support. This work was funded by an FCT-ANR project (FCT-ANR//BIA-EVF/0013/2012) to SM and Isabelle Olivieri. TM acknowledges a ​Post Doc grant SFRH/BPD/85419/2012.

Author contribution statement

DG, SM and AJ conceived and designed the experiments. DG performed the experiments, with help from TD and CC in the proteinase activity analysis. DG and SM analyzed the data and wrote the manuscript, with considerable contributions from AJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diogo P. Godinho or Sara Magalhães.

Additional information

Communicated by Merijn Kant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P. Godinho, D., Janssen, A., Dias, T. et al. Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics. Oecologia 180, 161–167 (2016). https://doi.org/10.1007/s00442-015-3434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3434-z

Keywords

Navigation