Skip to main content

Advertisement

Log in

Trait convergence and diversification arising from a complex evolutionary history in Hawaiian species of Scaevola

  • Physiological ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Species variation in functional traits may reflect diversification relating to convergence and/or divergence depending on environmental pressures and phylogenetic history. We tested trait-environment relationships and their basis in finer-scale evolutionary processes among nine extant Hawaiian species of Scaevola L. (Goodeniaceae), a taxon with a complex history of three independent colonizations by different phylogenetic lineages, parallel ecological specialization, and homoploid hybridization events in Hawai‘i. Using a wild population for each species, we evaluated traits related to plant function (morphology, leaf and wood anatomy, nutrient and carbon isotope composition). Hawaiian Scaevola species were distributed across coastal, dry forest and wet forest environments; multivariate environmental analysis using abiotic and biotic factors further showed that species from distantly related lineages inhabited similar environments. Many traits correlated with environment (based on the multivariate environmental analysis), considering both distantly related species and more closely related species. Scaevola species within shared habitats generally showed trait convergence across distantly related lineages, particularly among wet forest species. Furthermore, trait diversification through divergence was extensive among closely related Scaevola species that radiated into novel environments, especially in plant morphology and traits affecting water relations. Homoploid hybrid-origin species were “intermediate” compared to their ancestral parent species, and possessed trait combinations relevant for their current habitat. The diversity in functional traits reflected strong influences of both ecology and evolutionary history in native Hawaiian Scaevola species, and trait correspondence with environment was due to the combination of multiple processes within the taxon: trait pre-adaptation and filtering, evolutionary convergence, divergence, and hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly D (2009) Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. PNAS 106(S2):19699–19706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpha GG, Drake DR, Goldstein G (1996) Morphological and physiological responses of Scaevola sericea (Goodeniaceae) seedlings to salt spray and substrate salinity. Am J Bot 83:86–92

    Article  Google Scholar 

  • Baldwin BG, Wagner WL (2010) Hawaiian angiosperm radiations of North American origin. Ann Bot 105:849–879

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballard HE, Sytsma KJ (2000) Evolution and biogeography of the woody hawaiian violets (viola, violaceae): arctic origins, herbaceous ancestry and bird dispersal. Evol 54:1521–1532. doi:10.1111/j.0014-3820.2000.tb00698.x

    Article  Google Scholar 

  • Baraloto C, Hardy OJ, Paine CET, Dexter KG, Cruaud C, Dunning LT, Gonzalez M-A, Molino J-F, Sabatier D, Savolainen V, Chave J (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. J Ecol 100:690–701

    Article  Google Scholar 

  • Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Iowa State University Press, Ames

    Google Scholar 

  • Blonder B, Baldwin BG, Enquist BJ, Robichaux RH (2015) Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae). J Ecol (in press). doi 10.1111/1365-2745.12497

  • Brodribb TJ, Field TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulics perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  • Carlquist S (1969) Wood anatomy of Goodeniaceae and the problem of insular woodiness. Ann Mo Bot Gard 56:358–390

    Article  Google Scholar 

  • Carlquist S (1974) Island biology. Columbia University Press, New York

    Book  Google Scholar 

  • Carlquist S (1980) Hawai‘i a natural history: geology climate native flora and fauna above the shoreline, 2nd edn. Pacific Tropical Botanical Garden, Lawai

    Google Scholar 

  • Cordell S, Goldstein G, Meinzer FC, Handley LL (1999) Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. Funct Ecol 13:811–818

    Article  Google Scholar 

  • Cornelissen HC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Cornwell WK, Bhaskar R, Sack L, Cordell S, Lunch CK (2007) Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct Ecol 21:1063–1071

    Article  Google Scholar 

  • Creese C, Lee A, Sack L (2011) Drivers of morphological diversity and distribution in the Hawaiian fern flora: trait associations with size growth form and environment. Am J Bot 98:956–966

    Article  PubMed  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  • Degener O (1945) Plants of Hawai‘i National Park: illustration of plants and customs of the South Seas. Braun-Brumfeld, Ann Arbor

    Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Article  Google Scholar 

  • Dunbar-Co S, Sporck M, Sack L (2009) Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int J Plant Sci 170:61–75

    Article  Google Scholar 

  • Edwards EJ, Chatelet DS, Sack L, Donoghue MJ (2014) Leaf life span and the leaf economic spectrum in the context of whole plant architecture. J Ecol 102:328–336

    Article  Google Scholar 

  • Ellis B, Daly DC, Hickey LJ, Mitchell JD, Johnson KR, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, Ithaca

    Google Scholar 

  • Elmore M (2008) Pollination biology of Hawaiian Scaevola (Goodeniaceae). Master’s dissertation, Department of Botany, University of Hawaii, Honolulu, HI

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Feoli E (1977) On the resolving power of principal component analysis in plant community ordination. Plant Ecol 33:119–125

    Google Scholar 

  • Franks PJ, Beerling RA (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106:10343–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freschet GT, Dias AT, Ackerly DD, Aerts R, van Bodegom PM, Cornwell WK, Dong M, Kurokawa H, Liu G, Onipchenko VG, Ordoñez JC, Peltzer DA, Richardson SJ, Shidakov II, Soudzilovskaia NA, Tao J, Cornelissen JHC (2011) Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Glob Ecol Biogeogr 20:755–765

    Article  Google Scholar 

  • Gillett GW (1966) Hybridization and its taxonomic implications in the Scaevola gaudichaudiana complex of the Hawaiian Islands. Evolution 20:506–516

    Article  Google Scholar 

  • Givnish TJ, Montgomery RA, Goldstein G (2004) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes static light responses and whole-plant compensation points. Am J Bot 91:228–246

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ, Millam KC, Mast AR, Paterson TB, Theim TJ, Hipp AL, Henss JM, Smith JF, Wood KR, Sytsma KJ (2009) Origin adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc R Soc Biol Sci 276:407–416

    Article  Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260

    Article  Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Grubb PJ (1998) A reassessment of the strategies of plants which cope with shortages of resources. Persp Plant Ecol Evol Syst 1:3–13

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Havran JC, Sytsma KJ, Ballard HE Jr (2009) Evolutionary relationships interisland biogeography and molecular evolution in the Hawaiian violets (Viola: Violaceae). Am J Bot 96:2087–2099

    Article  CAS  PubMed  Google Scholar 

  • Hickey LJ (1979) A revised classification of the architecture of dicotyledonous leaves. Systematic anatomy of leaf and stem with a brief history of the subject. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, 2nd edn, vol 1. Oxford University Press, New York

  • Howarth DG, Baum DA (2005) Genealogical evidence of homoploid hybrid speciation in an adaptive radiation of Scaevola (Goodeniaceae) in the Hawaiian Islands. Evolution 59:948–961

    Article  CAS  PubMed  Google Scholar 

  • Howarth DG, Gustafsson MHG, Baum DA, Motley TJ (2003) Phylogenetics of the genus Scaevola (Goodeniaceae): implications for dispersal patterns across the Pacific Basin and colonization of the Hawaiian Islands. Am J Bot 90:915–923

    Article  PubMed  Google Scholar 

  • Hue NV, Uehara G, Yost RS, Ortiz-Escobar M (2007) Distribution of soil orders in Hawaii. J Hawai‘i Pac Agric 14:17–29

    Google Scholar 

  • Karabourniotis G (1998) Light-guiding function of foliar sclereids in the evergreen sclerophyll Phillyrea latifolia: a quantitative approach. J Exp Bot 49:739–746

    Article  CAS  Google Scholar 

  • Kooyman R, Cornwell W, Westoby M (2010) Plant functional traits in Australian subtropical rain forest: partitioning within-community from cross-landscape variation. J Ecol 98:517–525

    Article  Google Scholar 

  • Kraft N, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422

    Article  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Martin RE, Asner GP, Sack L (2007) Genetic variation in leaf pigment optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151:387–400

    Article  PubMed  Google Scholar 

  • Montgomery RA, Givnish TJ (2008) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Oecologia 155:455–467

    Article  PubMed  Google Scholar 

  • Nichols S (1977) On the interpretation of principal components analysis in ecological contexts. Plant Ecol 34:191–197

    Article  Google Scholar 

  • Patterson R (1990) Goodeniaceae. In: Wagner WL, Herbst DR, Sohmer SH (eds) Manual of the flowering plants of Hawaii. University of Hawai‘i Press and Bishop Museum Press, Honolulu, HI, pp 782–789

    Google Scholar 

  • Patterson R (1995) Phylogenetic analysis of Hawaiian and other Pacific species of Scaevola (Goodeniaceae). In: Wagner WL, VA Funk VA (eds) Hawaiian biogeography: evolution on a hot spot archipelago. Smithsonian Institution Press, Washington, DC, pp 363–378

  • Pivovaroff A, Sharifi R, Scoffoni C, Sack L, Rundel P (2014) Making the best of the worst of times: traits underlying combined shade and drought tolerance of Ruscus aculeatus and Ruscus microglossum (Asparagaceae). Funct Plant Biol 41:11–24

    Article  Google Scholar 

  • Price JP, Wagner WL (2004) Speciation in Hawaiian angiosperm lineages: cause consequence and mode. Evolution 58:2185–2200

    Article  PubMed  Google Scholar 

  • Rasband WS (2007) ImageJ. US National Institutes of Health, Bethesda, MD. http://rsb.info.nih.gov/ij/

  • Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164

    Article  Google Scholar 

  • Robichaux RH, Pearcy RW (1984) Evolution of C3 and C4 plants along an environmental moisture gradient: patterns of photosynthetic differentiation in Hawaiian Scaevola and Euphorbia species. Am J Bot 71:121–129

    Article  Google Scholar 

  • Royer DL, Kooyman RM, Little SA, Wilf P (2009) Ecology of leaf teeth: a multi-site analysis from an Australian subtropical rainforest. Am J Bot 96:738–750

    Article  PubMed  Google Scholar 

  • Rundell RJ, Price TD (2009) Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol Evol 24:394–399

    Article  PubMed  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000

    Article  PubMed  Google Scholar 

  • Sack L, Cowan PD, Jaikumar NJ, Holbrook NM (2003) The ‘hydrology’ of leaves: coordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

    Article  Google Scholar 

  • Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012) Developmentally-based scaling of leaf venation architecture explains global ecological patterns. Nat Commun 837 doi: 101038/ncomms1835

  • Santiago LS, Wright SJ (2007) Leaf functional traits of tropical forest plants in relation to growth form. Funct Ecol 21:19–27

    Article  Google Scholar 

  • Scoffoni C, Rawls M, McKown AD, Cochard H, Sack L (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156:832–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA, Givnish TJ, Sack L (2015) Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytol 207:43–58

    Article  CAS  PubMed  Google Scholar 

  • Shannon RK, Wagner WL, Nicolson DH (1997) Proposal to conserve the name Scaevola taccada (Goodeniaceae) with a conserved type. Taxon 46:801–802

    Article  Google Scholar 

  • US Department of Agriculture (2010) Keys to soil taxonomy, 11th edn. US Department of Agriculture and Natural Resources Conservation Service, USA

    Google Scholar 

  • Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for ten Hawaiian species of contrasting light habitats. New Phytol 185:156–172

    Article  CAS  PubMed  Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005a) Assessing the generality of the global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets U, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005b) Modulation of leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14:411–421

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Hawaiian Department of Land and Natural Resources Division of Forestry and Wildlife, State Parks, Hawai‘i Volcanoes National Park, and Maui Nui Botanical Garden for providing permits and access. We thank Dr Sherwin Carlquist for helpful discussion on Scaevola and evolution in the Hawaiian Islands. We also thank anonymous reviewers for their insightful contributions, and Elspeth McKown and Chelsea Taylor for lab and field assistance. This work was supported by NSF grant no. IOS-0546784.

Author contribution statement

A. D. M. and L. S. designed and conceptualized the study. M. E. A. provided Scaevola sampling locations, plant identification, and expertise on Hawaiian flora and ecology. A. D. M. and M. E. A. collected the field data. A. D. M. led the data synthesis and analysis. A. D. M. and L. S. wrote the manuscript with contributions from M. E. A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athena D. McKown.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Bettina Engelbrecht.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKown, A.D., Akamine, M.E. & Sack, L. Trait convergence and diversification arising from a complex evolutionary history in Hawaiian species of Scaevola . Oecologia 181, 1083–1100 (2016). https://doi.org/10.1007/s00442-016-3640-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3640-3

Keywords

Navigation