Skip to main content
Log in

The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community

  • Published:
Oecologia Aims and scope Submit manuscript

Abstract 

The structure of the soil food web in two beech (Fagus sylvatica) forests, the Göttinger Wald and the Solling forest (Northern Germany), was investigated using variations in tissue 15N concentrations of animal species or taxa. The Göttinger Wald is located on a limestone plateau and characterized by mull humus with high macrofauna activity, particularly of Lumbricidae, Diplopoda and Isopoda. In contrast, the Solling forest is located on a sandstone mountain range and characterized by moder humus. The soil fauna of this forest is dominated by mesofauna, particularly by Collembola, Enchytraeidae and Oribatida. In June 1995 soil fauna was sampled using heat extraction. Three soil layers were analysed at each of the sites. 15N/14N ratios of bulk material increased strongly with soil depth in both forests. This also applied to the water-soluble fraction at the Göttinger Wald, but not at the Solling. Generally, the water-soluble fraction was more enriched in 15N than the bulk materials. For most animals studied 15N/14N ratios varied little with soil depth. In both forests soil animals could be classified either as saprophages, including microphytophages, or predators. On average, the δ15N of predatory taxa (Chilopoda, Araneida, Gamasina, Staphylinidae) exceeded that of saprophagous or microphytophagous taxa (Lumbricidae, Isopoda, Diplopoda, Collembola, Oribatida, Enchytraeidae) by 4.4 and 3.9‰ for the Göttinger Wald and the Solling, respectively. We assume that most of the saprophagous or microphytophagous taxa studied consist of primary and secondary decomposers and hypothesize that predators prey more on secondary than primary decomposers. Generally, average δ15N values differed little between saprophagous (Lumbricidae, Diplopoda, Isopoda) and microphytophagous taxa (Collembola, Oribatida). The variations in δ15N values of species within these taxa consistently exceeded the variation between them, indicating that the species of each of these taxa form a continuum from primary to secondary decomposers. Also, variations in δ15N values within predatory taxa in most cases exceeded that between taxa excluding top predators like Sorex. We conclude that using higher taxonomic units in soil food web analysis is problematic and in general not consistent with nature. Higher taxonomic units may only be useful for depicting very general trophic groupings such as predators or microbi-detritivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 25 May 1999 / Accepted: 3 December 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheu, S., Falca, M. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123, 285–296 (2000). https://doi.org/10.1007/s004420051015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004420051015

Navigation