Skip to main content
Log in

A laboratory model of surface crust formation and disruption on lava flows through non-uniform channels

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Crust formation on basaltic lava flows dictates conditions of both flow cooling and emplacement. For this reason, flow histories are dramatically different depending on whether lava is transported through enclosed lava tubes or through open channels. Recent analog experiments in straight uniform channels (Griffiths et al. J Fluid Mech 496:33–62, 2003) have demonstrated that tube flow, dictated by a stationary surface crust, can be distinguished from a mobile crust regime, where a central solid crust is separated from channel walls by crust-free shear zones, by a simple dimensionless parameter ϑ, such that ϑ<25 produces tube flow and ϑ>25 describes the mobile crust regime. ϑ combines a previously determined parameter ψ, which describes the balance between the formation rate of surface solid and the shear strain that disrupts the solid crust, with the effects of thermal convection (described by the Rayleigh number Ra).

Here we explore ways in which ϑ can be used to describe the behavior of basaltic lava channels. To do this we have extended the experimental approach to examine the effects of channel irregularities (expansions, contractions, sinuosity, and bottom roughness) on crust formation and disruption. We find that such changes affect local flow behavior and can thus change channel values of ϑ. For example, gradual widening of a channel results in a decrease in flow velocity that causes a decrease in ϑ and may allow a down-flow transition from the mobile crust to the tube regime. In contrast, narrowing of the channel causes an increase in flow velocity (increasing ϑ), thus inhibiting tube formation.

We also quantify the fraction of surface covered by crust in the mobile crust regime. In shallow channels, variations in crust width (d c) with channel width (W) are predicted to follow d cW 5/3. Analysis of channelized lava flows in Hawaii shows crustal coverage consistent with this theoretical result along gradually widening or narrowing channel reaches. An additional control on crustal coverage in both laboratory and basaltic flows is disruption of surface crust because of flow acceleration through constrictions, around bends, and over breaks in slope. Crustal breakage increases local rates of cooling and may cause local blockage of the channel, if crusts rotate and jam in narrow channel reaches. Together these observations illustrate the importance of both flow conditions and channel geometry on surface crust development and thus, by extension, on rates and mechanisms of flow cooling. Moreover, we note that this type of analysis could be easily extended through combined use of FLIR and LiDAR imaging to measure crustal coverage and channel geometry directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Behncke B, Neri M (2003) Cycles and trends in the recent eruptive behaviour of Mount Etna (Italy). Can J Earth Sci 40:1405–1411

    Article  Google Scholar 

  • Booth B, Self S (1973) Rheological features of the 1971 Mount Etna lavas. Philos Trans R Soc Lond A 274:99–106

    Article  ADS  Google Scholar 

  • Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–1993 Etna eruption: Chronology and geological observations. Acta Vulcanol 4:1–15

    Google Scholar 

  • Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J Geophys Res 103:27291–27301

    Article  ADS  Google Scholar 

  • Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:263–280

    Article  CAS  ADS  Google Scholar 

  • Calvari S, Neri M, Pinkerton H (2002) Effusion rate estimates during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123

    Article  Google Scholar 

  • Cashman KV, Mangan MT, Newman S (1994) Surface degassing and modifications to vesicle size distributions in Kilauea basalt. J Volcanol Geotherm Res 61:45–68

    Article  CAS  ADS  Google Scholar 

  • Cashman KV, Thornber CR, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of pahoehoe lava to ‘a‘. Bull Volcanol 61:306–323

    Article  ADS  Google Scholar 

  • Crisci GM, Rongo R, DiGregorio S, Spataro W (2004) The simulation model SCIARA: The 1991 and 2001 lava flows at Mount Etna. J Volcanol Geotherm Res 132:253–267

    Article  CAS  ADS  Google Scholar 

  • Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95:1255–1270

    Article  ADS  Google Scholar 

  • Crisp J, Baloga S (1994) Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows. J Geophys Res 95:1255–1270

    Article  ADS  Google Scholar 

  • Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri D (1994) Crystallization history of the 1984 Mauna Loa flow. J Geophys Res 99:7177–7198

    Article  CAS  ADS  Google Scholar 

  • Dragoni M, Tallarico A (1994) The effect of crystallization on the rheology and dynamics of lava flows. J Volcanol Geotherm Res 59:241–252

    Article  ADS  Google Scholar 

  • Dutton CE (1884) The Hawaiian volcanoes. US Geol Surv 4th Ann Rep, Government Printing Office, pp 75–219

  • Fink JH, Griffiths RW (1990) Radial spreading of viscous-gravity currents with solidifying crust. J Fluid Mech 221:485–510

    Article  ADS  Google Scholar 

  • Fink JH, Griffiths RW (1992) A laboratory analog study of the morphology of lava flows extruded from point and line sources. J Volcanol Geotherm Res 54:19–32

    Article  ADS  Google Scholar 

  • Fink JH, Zimbelman JR (1986) Rheology of the 1983 Royal Gardens basalt flows, Kilauea Volcano, Hawaii. Bull Volcanol 48:87–96

    Article  ADS  Google Scholar 

  • Fink JH, Zimbelman JR (1990) Longitudinal variations in rheological properties of lavas: Pu Oo Basalt Flows, Kilauea Volcano, Hawaii. In: Fink JH (ed) Lava flows and domes. Springer, Berlin Heidelberg New York, pp 157–173

  • Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on lava flow morphology. J Volcanol Geothermal Res 96:145–159

    Article  CAS  ADS  Google Scholar 

  • Greeley R (1987) The role of lava tubes in Hawaiian volcanoes. US Geol Surv Prof Pap 1350:1589–1602

    Google Scholar 

  • Griffiths RW (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32:477–518

    Article  MATH  ADS  Google Scholar 

  • Griffiths RW, Fink JH (1992) The morphology of lava flows under planetary environments: Predictions from analog experiments. J Geophys Res 97:19739–19748

    Article  ADS  Google Scholar 

  • Griffiths RW, Fink JH (1993) Effects of surface cooling on the spreading of lava flows and domes. J Fluid Mech 252:667–702

    Article  ADS  Google Scholar 

  • Griffiths RW, Fink JH (1997) Solidifying Bingham extrusions: A model for the growth of silicic lava domes. J Fluid Mech 347:13–36

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Griffiths RW, Kerr RC, Cashman KV (2003) Patterns of solidification in channel flows with surface cooling. J Fluid Mech 496:33–62

    Article  CAS  MATH  MathSciNet  ADS  Google Scholar 

  • Guest JE, Underwood JR, Greeley R (1980) The role of lava tubes in flows from Observatory Vent, 1971 eruption at Mount Etna, Sicily. Bull Volcanol 47:635–648

    Article  ADS  Google Scholar 

  • Guest JE, Wood C, Greeley R (1984) Lava tubes, terraces and megatumuli on the 1614–1624 pahoehoe lava flow field, Mount Etna. Geol Mag 117:601–606

    Article  Google Scholar 

  • Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: Observations of the 1981 and 1993 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540

    Article  ADS  Google Scholar 

  • Harris AJL, Rowland SK (2001) FLOWGO: A kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44

    Article  ADS  Google Scholar 

  • Harris AJL, Neri M (2002) Volumetric observations during paroxysmal eruptions at Mount Etna: Pressurized drainage of a shallow chamber or pulsed magma supply? J Volcanol Geotherm Res 116:79–95

    Article  CAS  ADS  Google Scholar 

  • Helz RT, Banks NG, Heliker C, Neal CA, Wolfe EW (1995) Comparative geothermometry of recent Hawaiian eruptions. J Geophys Res 100:17637–17657

    Article  CAS  ADS  Google Scholar 

  • Helz RT, Heliker C, Hon K, Mangan M (2003) Thermal efficiency of lava tubes in the Pu`u `O`o-Kupaianaha eruption. US Geol Surv Prof Pap 1676:105–120

    Google Scholar 

  • Holcomb RT (1987) Eruptive history and long-term behavior of Kilauea Volcano. US Geol Surv Prof Pap 1350:261–350

    Google Scholar 

  • Hon K, Kauahikaua JP, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheets: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370

    Article  Google Scholar 

  • Hon KA, Gansecki C, Kauahikaua J (2003) The transition from ‘a‘ā to pahoehoe crust on flows emplaced during the Pu‘u ‘O‘o-Kupaianaha eruption. US Geol Surv Prof Pap 1676:89–104

    Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J R Astr Soc 39:361–383

    Google Scholar 

  • Kauahikaua JP, Cashman KV, Mattox TN, Hon K, Heliker CC, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, Hawaii. J Geophys Res 103:27303–27324

    Article  ADS  Google Scholar 

  • Kauahikaua JP, Sherrod D, Cashman K, Heliker C, Hon K, Mattox T, Johnson J (2003) Hawaiian lava-flow dynamics during the Pu‘u ‘O‘o -Kupaianaha eruption: A tale of two decades. US Geol Surv Prof Pap 1676:63–87

    Google Scholar 

  • Kerr RC (2001) Thermal erosion by laminar lava flows. J Geophys Res 106:26453–26465

    Article  ADS  Google Scholar 

  • Keszthelyi L (1995) A preliminary thermal budget for lava tubes on the Earth and planets. J Geophys Res 100:20411–20420

    Article  ADS  Google Scholar 

  • Keszthelyi L, Denlinger R (1996) The initial cooling of pahoehoe flow lobes. J Volcanol Geotherm Res 58:5–18

    ADS  Google Scholar 

  • Kilburn CRJ (1996) Patterns and predictability in the emplacement of subaerial lava flows and flow fields. In: Scarpa C, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer-Verlag, Berlin Heidelberg New York, pp 491–537

  • Kilburn CR (2000) Lava flows and flow fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 291–306

  • Kilburn CRJ (2004) Fracturing as a quantitative indicator of lava flow dynamics. J Volcanol Geotherm Res 132:209–224

    Article  CAS  ADS  Google Scholar 

  • Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567

    Google Scholar 

  • Lyman AW, Koenig E, Fink JH (2004) Predicting yield strengths and effusion rates of lava domes from morphology and underlying topography. J Volcanol Geotherm Res 129:125–138

    Article  CAS  ADS  Google Scholar 

  • Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251:169–191

    Article  Google Scholar 

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32: doi:10.1029/2004GL021815

  • Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. US Geol Surv Prof Pap 1350:1569–1588

    ADS  Google Scholar 

  • Neri A (1998) A local heat transfer analysis of lava cooling in the atmosphere: Application to thermal diffusion-dominated lava flows. J Volcanol Geotherm Res 81:215–243

    Article  CAS  ADS  Google Scholar 

  • Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56:343–360

    ADS  Google Scholar 

  • Pinkerton H, Sparks RSJ (1978) Field measurements of the rheology of flowing lava. Nature 276:383–385

    Article  ADS  Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120

    ADS  Google Scholar 

  • Pinkerton H, Norton G (1995) Rheological properties of basaltic lavas at sub-liquidus temperatures: Laboratory and field measurements on lavas from Mount Etna. J Volcanol Geotherm Res 68:307–323

    Article  CAS  ADS  Google Scholar 

  • Pinkerton H, James M, Jones A (2002) Surface temperature measurements of active lava flows on Kilauea Volcano, Hawai`i. J Volcanol Geotherm Res 113:159–176

    Article  CAS  ADS  Google Scholar 

  • Pompilio M, Triglia R, Zanon V (1998) Melting experiments on Mt. Etna lavas; I, The calibration of an empirical geothermometer to estimate the eruptive temperature. Acta Vulcanol 10:67–75

    Google Scholar 

  • Rowland SK, Walker GPL (1990). Pahoehoe and aa in Hawaii: Volumetric flow rate controls the lava structure. Bull Volcanol 52:631–641

    Article  Google Scholar 

  • Sakimoto SEH, Zuber MT (1998) Flow and convective cooling in lava tubes. J Geophys Res 103:27465–27487

    Article  ADS  Google Scholar 

  • Sakimoto SHE, Gregg TKP (2001) Channeled flow: Analytic solutions, laboratory experiments, and applications to lava flows. J Geophys Res 106:8629–8644

    Article  ADS  Google Scholar 

  • Soule SA, Cashman KV (2004) The mechanical properties of solidified polyethylene glycol 600, an analog for lava crust. J Volcanol Geotherm Res 129:139–153

    Article  CAS  ADS  Google Scholar 

  • Soule SA, Fornari DJ, Perfit MR, Tivey MA, Ridley WI, Schouten H (2005) Channelized lava flows at the East Pacific Rise crest 9–10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust. Geochem Geophys Geosyst 6, Q08005, doi:10.1029/2005GC000912

  • Tallarico A, Dragoni M (1999) Viscous Newtonian laminar flow in a rectangular channel: Application to Etna lava flows. Bull Volcanol 61:40–47

    Article  ADS  Google Scholar 

  • Tallarico A, Dragoni M (2000) A three-dimensional Bingham model for channeled lava flows. J Geophys Res 105:25969–25980

    Article  ADS  Google Scholar 

  • Tilling RI, Christiansen RL, Duffield WA, Endo ET, Holcomb RT, Koyanagi RY, Peterson DW, Unger JD (1987) The 1972–1974 Mauna Ulu eruption, Kilauea Volcano: An example of quasi-steady-state magma transfer. US Geol Surv Prof Pap 1350:405–469

    Google Scholar 

  • Wolfe EW (ed) (1988) The Puu Oo eruption of Kilauea Volcano, Hawaii: Episodes 1 through 20, January 3, 1983, through June 8, 1984. US Geol Surv Prof Pap 1463:1–251

Download references

Acknowledgements

We thank Tony Beasley and Brad Ferguson for their technical assistance with the experiments, and L. Keszthelyi and S. Rowland for helpful reviews. Funding from ARC Discovery Grant DP0342569 and NSF Grants # EAR-9909507 and EAR-0207919 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine V. Cashman.

Additional information

Editorial responsibility: A. Harris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cashman, K.V., Kerr, R.C. & Griffiths, R.W. A laboratory model of surface crust formation and disruption on lava flows through non-uniform channels. Bull Volcanol 68, 753–770 (2006). https://doi.org/10.1007/s00445-005-0048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-005-0048-z

Keywords

Navigation