Skip to main content
Log in

Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central–Southern Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central–Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from −66.8 to −55.6 ‰ V-PDB and from −279 to −195 ‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from −5.8 to −0.4 ‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from −13.4 to −8.2 ‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2–CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water–bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and measured δ13CTDIC values are not consistent, indicating that CO2 and the main carbon-bearing ion species (HCO3 ) are not in isotopic equilibrium, likely due to the fast kinetics of biochemical processes involving both CO2 and CH4. This study demonstrates that the vertical patterns of the CO2/CH4 ratio and of δ13C-CO2 and δ13C-CH4 are to be regarded as promising tools to detect perturbations, related to different causes, such as changes in the CO2 input from sublacustrine springs, that may affect aerobic and anaerobic layers of meromictic volcanic lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahlgren I, Sörensson F, Waara T, Vrede K (1994) Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23(6):367–377

    Google Scholar 

  • Anzidei M, Esposito A, De Giosa F (2006) The dark side of the Albano crater lake. Ann Geophys 49:1275–1287

    Google Scholar 

  • Anzidei M, Carapezza ML, Esposito A, Giordano G, Lelli M, Tarchini L (2008) The Albano Maar Lake high resolution bathymetry and dissolved CO2 budget (Colli Albani volcano, Italy): constrains to hazard evaluation. J Volcanol Geotherm Res 171:258–268

    Article  Google Scholar 

  • Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG, Ballows A, Schlegel HG (eds) The prokaryotes. a handbook of habitats, isolation and identification of bacteria, vol 1. Springer, Berlin

    Google Scholar 

  • Bade DL, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of δ13CDIC in lakes: geochemistry, lake metabolism and morphometry. Limnol Oceanogr 49:1160–1172

    Article  Google Scholar 

  • Badrudin M (1994) Kelut volcano monitoring: hazards, mitigation and changes in water chemistry prior to the 1990 eruption. Geochem J 28:233–241

    Article  Google Scholar 

  • Balistrieri LS, Murray JW, Paul B (1992) The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnol Oceanogr 37:510–528

    Article  Google Scholar 

  • Barker JF, Fritz P (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293:289–291

    Article  Google Scholar 

  • Beccaluva L, Coltorti M, Di Girolamo P, Melluso L, Milani L, Morra V, Siena F (2002) Petrogenesis and evolution of Mt Vulture alkaline volcanism (Southern Italy). Miner Petrol 74:277–297

    Article  Google Scholar 

  • Berner EK, Berner RA (1987) Global water cycle: geochemistry and environment Prentice-Hall, Englewood Cliffs, 397 pp

  • Bianchi L, Mannelli F, Viti C, Adessi A, De Philippis R (2010) Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno. Int J Hydr En 35:12213–12223

    Article  Google Scholar 

  • Blong RJ (1984) Volcanic hazard: a sourcebook of the effects of eruptions. Academic, Orlando, p 424

    Google Scholar 

  • Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Ann Rev Microbiol 35:405–452

    Article  Google Scholar 

  • Brantley SL, Agustsdottir AM, Rowe GL (1993) Crater lakes reveal volcanic heat and volatile fluxes. Geol Soc Am 3:175–178

    Google Scholar 

  • Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339:370–373

    Article  Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptation. FEMS Microbiol Rev 24(5):691–710

    Google Scholar 

  • Buresh RJ, Patrick WH (1981) Nitrate reduction to ammonium and organic nitrogen in an estuarine sediment. Soil Biol Biochem 13:279–283

    Article  Google Scholar 

  • Calcagnile G, Panza GF (1981) The main characteristics of the lithosphere–asthenosphere system in Italy and surrounding regions. Pure Appl Geophys 19:865–879

    Article  Google Scholar 

  • Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, Fiebig J (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta 71:3040–3055

    Article  Google Scholar 

  • Caliro S, Chiodini G, Izzo G, Minopoli C, Signorini A, Avino R, Granieri D (2008) Geochemical and biochemical evidence of lake overturn and fish kill at Lake Averno, Italy. J Volcanol Geotherm Res 178:305–316

    Article  Google Scholar 

  • Caracausi A, Nuccio PM, Favara R, Nicolosi M, Paternoster M (2009) Gas hazard assessment at the Monticchio crater lakes of Mt Vulture, a volcano in Southern Italy. Terra Nova 21:83–87

    Article  Google Scholar 

  • Carapezza ML, Tarchini L (2007) Accidental gas emission from shallow pressurized aquifers at Alban Hills volcano (Rome, Italy): geochemical evidence of magmatic degassing? J Volcanol Geotherm Res 165:5–16

    Article  Google Scholar 

  • Carapezza ML, Lelli M, Tarchini L (2008) Geochemistry of the Albano and Nemi crater lakes in the volcanic district of Alban Hills (Rome, Italy). J Volcanol Geotherm Res 178:297–304

    Article  Google Scholar 

  • Carapezza ML, Lelli M, Tarchini L (2010) Geochemistry of the Albano crater lake. In: Funiciello R, Giordano G (eds) The Colli Albani volcano. Special Publications of IAVCEI, 3. Geological Society of London, London, pp 107–139

  • Carapezza ML, Barberi F, Ranaldi M, Ricci T, Tarchini L, Barrancos J, Fischer C, Granieri D, Lucchetti C, Melian G, Perez N, Tuccimei P, Vogel A, Weber K (2012) Hazardous gas emissions from the flanks of the quiescent Colli Albani volcano (Rome, Italy). Appl Geochem 27(9):1767–1782

    Article  Google Scholar 

  • Carpenter SR (1983) Lake geometry: implications for production and sediment accretion rates. J Theor Biol 105:273–286

    Google Scholar 

  • Casper P (1992) Methane production in lakes of different trophic state. Arch Hydrobiol Beih Ergebn Limnol 37:149–154

    Google Scholar 

  • Chiodini G (1996) Gases dissolved in groundwaters: analytical methods and examples of applications in central Italy. In: Marini L, Ottonello G (eds) Proc. Symp. Environmental Geochemistry, Castelnuovo di Porto, Rome, 22–26 May, pp 135–148

  • Chiodini G, Cioni R, Guidi M, Marini L, Principe C, Raco B (1997) Water and gas chemistry of the Lake Piccolo of Monticchio (Mt Vulture, Italy). Current Research on Volcanic Lakes 10:3–8

    Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Magro G, Marini L, Raco B (2000) Gas chemistry of the Lake Piccolo of Monticchio, Mt Vulture, in December 1996. Acta Vulcanol 12:139–142

    Google Scholar 

  • Chiodini G, Tassi F, Caliro S, Chiarabba C, Vaselli O, Rouwet D (2012) Time-dependent CO2 variations in Lake Albano associated with seismic activity. Bull Volcanol 74:861–871

    Article  Google Scholar 

  • Chondrogianni C, Ariztegui D, Guilizzoni P, Lami A (1996) Lakes Albano and Nemi (central Italy): an overview. In: Guilizzoni G, Oldfield F (eds) Paleoenvironmental analysis of Italian Crater Lake and Adriatic sediments. Mem Ist Ital Idrobiol 55:17–22

  • Cioni R, Guidi M, Raco B, Marini L, Gambardella B (2003) Water chemistry of Lake Albano (Italy). J Volcanol Geotherm Res 120:179–195

    Article  Google Scholar 

  • Cioni R, Marini L, Raco B (2006) The Lake Piccolo di Monticchio: fluid geochemistry and evaluation of the limnic eruption hazard. In: Principe C (ed) The geology of Mount Vulture. CNR, Regione Basilicata, pp 171–177

    Google Scholar 

  • Coleman ML, Shepherd TJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

    Article  Google Scholar 

  • Conrad R, Aragno M, Seiler W (1983) Production and consumption of hydrogen in a eutrophic lake. Appl Environ Microbiol 45:502–510

    Google Scholar 

  • Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy—petrogenesis and inferences on the evolution of the mantle source. Lithos 28(3–6):221–240

    Article  Google Scholar 

  • Conticelli S, Carlson RW, Widom E, Serri G (2007) Chemical and isotopic composition (Os, Pb, Nd, and Sr) of Neogene to Quaternary calc-alkalic, shoshonitic, and ultrapotassic mafic rocks from the Italian peninsula: inferences on the nature of their mantle sources. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean area. Geol Soc Am Special Paper 418:171–202

  • Craig H, Lupton JE (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385

    Article  Google Scholar 

  • Davison W, Heaney SI, Talling JF, Rigg E (1980) Seasonal transformations and movements of iron in a productive English lake with deep water anoxia. Schweiz Z Hydrol 42:196–224

    Google Scholar 

  • De Benedetti AA, Funiciello R, Giordano G, Diano G, Caprilli E, Paterne M (2008) Volcanology, history and myths of the Lake Albano maar (Colli Albani volcano, Italy). J Volcanol Geotherm Res 176:387–406

    Article  Google Scholar 

  • Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo A, Piromallo C (1999) Orogens and slabs vs. their direction of subduction. Earth Sci Rev 45:167–208

    Article  Google Scholar 

  • Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Evans WC, Kling GW, Tuttle ML, Tanyileke G, White LD (1993) Gas buildup in Lake Nyos, Cameroon: the recharge process and its consequences. Appl Geochem 8:207–221

    Article  Google Scholar 

  • Evans WC, White LD, Tuttle ML, Kling GW, Tanyileke G, Michel RL (1994) Six years of changes at Lake Nyos, Cameroon yield clues to the past and cautions for the future. Geochem J 28:139–162

    Article  Google Scholar 

  • Evans WC, White LD, Rapp JB (1998) Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca ridge. J Geophys Res 15:305–313

    Google Scholar 

  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012, 21 pp. doi:10.1029/2002TC001488

  • Frenzel P, Thebrath B, Conrad R (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol Ecol 73:149–158

    Article  Google Scholar 

  • Funiciello R, Giordano G, De Rita D, Carapezza ML, Barberi F (2002) L’attività recente del cratere del Lago Albano di Castelgandolfo. Rend Fis Acc Lincei 9–13:113–143

    Article  Google Scholar 

  • Funiciello R, Giordano G, De Rita D (2003) The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. J Volcanol Geotherm Res 123:43–61

    Article  Google Scholar 

  • Gächter R, Bloesch J (1985) Seasonal and vertical variation in the C:P ratio of suspended and settling seston of lakes. Hydrobiologia 128(3):193–200. doi:10.1007/BF00006814

    Article  Google Scholar 

  • Gächter R, Mares A (1985) Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes? Limnol Oceanogr 30(2):364–371

    Article  Google Scholar 

  • Gambardella B, Giosa P, Marini L (2006) Il ruolo della interazione acqua-roccia nella genesi delle acque minerali del Monte Vulture. In: Principe C (ed) The geology of Mount Vulture. CNR, Regione Basilicata, pp 113–148

    Google Scholar 

  • Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): stratigraphy, structure and petrology. J Volcanol Geotherm Res 155:49–80

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry, 6th edn. Springer, Berlin, p 288

    Google Scholar 

  • Hongve D (1997) Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol Oceanogr 42:635–647

    Article  Google Scholar 

  • Hunt JM (1984) Generation and migration of light hydrocarbons. Science 226:1265–1270

    Article  Google Scholar 

  • Hurst T, Christenson B, Cole-Baker J (2012) Use of a weather buoy to derive improved heat and mass balance parameters for Ruapehu Crater Lake. J Volcanol Geotherm Res 235:23–28

    Article  Google Scholar 

  • Improta C, Andini S, Ferrara L (2004) Chemical and ecotoxicological characterization of Averno Lake. Bull Environ Contam Toxicol 72:472–481

    Article  Google Scholar 

  • Jetten MS, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UG, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MC, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22(5):421–437

    Article  Google Scholar 

  • Kusakabe M (1996) Hazardous crater lakes. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 573–598

    Chapter  Google Scholar 

  • Kusakabe M, Ohba T, Issa YY, Satake H, Ohizumi T, Evans WC, Tanyileke G, Kling GW (2008) Evolution of CO2 in lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem J 42:93–118

    Article  Google Scholar 

  • Loeb SL, Reuter JE (1981) The epilithic periphyton community: a five-lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crop. Verh Internat Verein Limnol 21:346–352

    Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  Google Scholar 

  • Lopes F, Viollier E, Thiam A, Michard G, Abril G, Groleau A, Prévot F, Carrias JF, Albéric P, Jézéquel D (2011) Biogeochemical modeling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932

    Article  Google Scholar 

  • Mah RA, Ward DM, Baresi L, Glass TL (1977) Biogenesis of methane. Annu Rev Microbiol 31:309–341

    Article  Google Scholar 

  • Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, Amsterdam

    Google Scholar 

  • Mango FD (1997) The light hydrocarbons in petroleum: a critical review. Org Geochem 26:417–440

    Article  Google Scholar 

  • Mango FD (2000) The origin of light hydrocarbons. Geochim Cosmochim Acta 64:1265–1277

    Article  Google Scholar 

  • Martini M, Giannini L, Prati F, Tassi F, Capaccioni B, Iozzelli P (1994) Chemical characters of crater lakes in the Azores and Italy: the anomaly of the Lake Albano. Geochem J 28:173–184

    Article  Google Scholar 

  • Martini M, Tassi F, Giannini L, Vaselli O (1995) Monticchio crater lakes (Italy): hazardous CO2 reservoir? Current Research on Volcanic Lakes 8:11–17

    Google Scholar 

  • Matsubaya O, Sakai H (1978) D/H and 18O/16O fractionation factors in evaporation of water at 60 and 80 °C. Geochem J 12:121–126

    Article  Google Scholar 

  • Mattei M, Conticelli S, Giordano G (2010) The Tyrrhenian margin geological setting: from the Apennine orogeny to the K-rich volcanism. In: Funiciello R, Giordano G (ed) The Colli Albani volcano. Special Publications of IAVCEI, 3. Geological Society of London, London, pp 7–27

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66:89–141

    Article  Google Scholar 

  • Moeller RE, Roskoski JP (1978) Nitrogen-fixation in the littoral benthos of an oligotrophic lake. Hydrobiologia 60(1):13–16

    Article  Google Scholar 

  • Molongoski JJ, Klug MJ (1980) Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwater Biol 10:507–518

    Article  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–184. doi:10.1111/j.1574-6941.1995.tb00281.x

    Article  Google Scholar 

  • Nairn IA, Wood CP, Hewson CAY, Otway PM (1979) Phreatic eruptions of Ruapheu: April 1975. N Z J Geol Geophys 22:155–173

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. BioScience 38:328–336

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530

    Article  Google Scholar 

  • Panza GF, Peccerillo A, Aoudia A, Farina B (2007) Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic setting: the Tyrrhenian Sea and surroundings. Earth Sci Rev 80:1–46

    Article  Google Scholar 

  • Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58(7):528–538. doi:10.1007/s004450050160

    Article  Google Scholar 

  • Paternoster M, Liotta M, Favara R (2008) Stable isotope ratios in meteoric recharge and groundwater at Mt Vulture volcano, southern Italy. J Hydrol 348:87–97

    Article  Google Scholar 

  • Peccerillo A (2005) Plio-Quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Berlin, p 365

    Google Scholar 

  • Rice A (2000) Rollover in volcanic crater lakes: a possible cause for Lake Nyos type disasters. J Volcanol Geotherm Res 97:233–239

    Article  Google Scholar 

  • Rich PH (1975) Benthic metabolism of a soft-water lake. Verh Internat Verein Limnol 19:1023–1028

    Google Scholar 

  • Rich PH (1980) Hypolimnetic metabolism in three Cape Cod lakes. Amer Midland Natur 104:102–109

    Article  Google Scholar 

  • Rollison H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical, New York, p 352

    Google Scholar 

  • Rowe GL Jr (1994) Oxygen, hydrogen and sulfur isotope systematics of the crater lake system of Poas volcano, Costa Rica. Geochem J 28:263–287

    Article  Google Scholar 

  • Rudd JWM, Taylor CD (1980) Methane cycling in aquatic environments. Adv Aquat Microbiol 2:77–150

    Google Scholar 

  • Rudd JWM, Hamilton RD, Campbell NER (1974) Measurement of microbial oxidation of methane in lake water. Limnol Oceanogr 19:519–524

    Google Scholar 

  • Salata GG, Roelke LA, Cifuentes LA (2000) A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem 69:153–161

    Article  Google Scholar 

  • Scarascia S, Lozej A, Cassinis R (1994) Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles. Boll Geofis Teor Appl 36:5–19

    Google Scholar 

  • Schettler G, Alberic P (2008) Laghi di Monticchio (Southern Italy, Region Basilicata): genesis of sediments—a geochemical study. J Paleolimnol 40:529–556

    Article  Google Scholar 

  • Schmid M, Halbwachs M, Wehrli B, Wüest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophys Geosyst 6:1–11

    Article  Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661

    Article  Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Article  Google Scholar 

  • Scrocca D, Carminati E, Doglioni C (2005) Deep structure of the southern Apennines, Italy: thin-skinned or thick-skinned? Tectonics 24, TC3005, 20 pp. doi:10.1029/2004TC001634

  • Sigurdsson H, Devince JD, Tchoua FM, Presser TS, Pringle MKW, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroon. J Volcanol Geotherm Res 31:1–16

    Article  Google Scholar 

  • Stewart WDP, Preston T, Peterson HG, Christofi N (1982) Nitrogen cycling in eutrophic freshwaters. Philosoph Transact Royal Soc B296:491–509

    Article  Google Scholar 

  • Stoppa F, Creati N, Rosatelli G, Rozzi B (1999) From mantle to vent, anatomy of a volcano, Mt Vulture (Southern Italy). Plinius 22:352–353

    Google Scholar 

  • Tassi F, Montegrossi G, Vaselli O (2004a) Metodologie di campionamento ed analisi di fasi gassose. Internal Report CNR-IGG, Florence, no. 1/2003, pp 16

  • Tassi F, Vaselli O, Giannini L, Tedesco D, Nencetti A, Montegrossi G, Yalire MM (2004b) A low-cost and effective method to collect water and gas samples from stratified crater lakes: the 485 m deep lake Kivu (DRC). In: Proceedings of the IAVCEI General Assembly, Puchon, Chile, 14–19 November

  • Tassi F, Vaselli O, Luchetti G, Montegrossi G, Minissale A (2008) Metodo per la determinazione dei gas disciolti in acque naturali. Int Rep CNR-IGG, Florence, n° 10450:11

    Google Scholar 

  • Tassi F, Vaselli O, Tedesco D, Montegrossi G, Darrah T, Cuoco E, Mapendano MY, Poreda R, Delgado Huertas A (2009a) Water and gas chemistry at Lake Kivu (DRC): geochemical evidence of vertical and horizontal heterogeneities in a multi-basin structure. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002191

  • Tassi F, Vaselli O, Fernandez E, Duarte E, Martinez M, Delgado Huertas A, Bergamaschi F (2009b) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68:193–205

    Article  Google Scholar 

  • Tassi F, Fiebig J, Vaselli O, Nocentini M (2012) Origins of methane discharging from volcanic–hydrothermal, geothermal and cold emissions in Italy. Chem Geol 310–311:36–48

    Article  Google Scholar 

  • Tedesco D, Scarsi P (1999) Chemical (He, H2, CH4, Ne, Ar, N2) and isotopic (He, Ne, Ar, C) variations at the Solfatara crater (southern Italy): mixing of different sources in relation to seismic activity. Earth Planet Sci Lett 171:465–480

    Article  Google Scholar 

  • Thauer RK, Badziong W (1980) Respiration with sulfate as electron acceptor. In: Knowles CJ (ed) Diversity of bacterial respiratory systems. CRC, Boca Raton, pp 65–85

    Google Scholar 

  • Valiela I (1991) Ecology of coastal ecosystems. In: Barnes RSK, Mann KH (eds) Fundamentals of aquatic ecology. Blackwell Science, Oxford, pp 57–76

    Chapter  Google Scholar 

  • Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. J Volcanol Geotherm Res 97:309–327

    Article  Google Scholar 

  • Varekamp JC, Pasternack GB, Rowe GL Jr (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179

    Article  Google Scholar 

  • Vaselli O, Tassi F, Montegrossi G, Capaccioni B, Giannini L (2006) Sampling and analysis of fumarolic gases. Acta Vulcanol 1–2:65–76

    Google Scholar 

  • Vaselli O, Tassi F, Tedesco D, Poreda JR, Caprai A (2011) Submarine and inland gas discharges from the Campi Flegrei (southern Italy) and the Pozzuoli Bay: geochemical clues for a common hydrothermal–magmatic source. Procedia Earth Planet Sci 4:57–73

    Article  Google Scholar 

  • Veronesi ML, Barbieri A, Hanselmann KW (2002) Phosphorus, carbon and nitrogen enrichment during sedimentation in a seasonally anoxic lake (Lake Lugano, Switzerland). J Limnol 61(2):215–223

    Article  Google Scholar 

  • Weiss R (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735

    Google Scholar 

  • Whitfield M (1978) Activity coefficients in natural waters. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions. CRC, Boca Raton, pp 153–300

    Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci 87:44576–44579

    Google Scholar 

  • Zehnder AJB (1978) Ecology of methane formation. In: Michell R (ed) Water pollution microbiology. Wiley, New York, pp 349–376

    Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    Article  Google Scholar 

  • Zolitschka B, Negendank JFW (1996) Sedimentology, dating and palaeoclimatic interpretation of a 763 ka record from Lago Grande di Monticchio, southern Italy. Quat Sci Rev 15:101–112

    Article  Google Scholar 

Download references

Acknowledgments

This work has benefitted from the financial support of the Ciudad de la Energia (Spain) in the framework of the project “Chemical composition of free- and diffuse-gases in CO2-rich natural analogs” (Resp. for the CNR-IGG O. Vaselli) and the Laboratory of Fluid and Rock Geochemistry (Resp. F. Tassi). The authors would like to thank J.C. Varekamp (Wesleyan University), G. Giordano (Roma Tre University), and an unknown reviewer for their detailed and constructive reviews of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Cabassi.

Additional information

Editorial responsibility: G. Giordano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabassi, J., Tassi, F., Vaselli, O. et al. Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central–Southern Italy). Bull Volcanol 75, 683 (2013). https://doi.org/10.1007/s00445-012-0683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-012-0683-0

Keywords

Navigation