Skip to main content
Log in

Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

High-temperature crystallization domains (HTCDs) including spherulites and lithophysae form during cooling of silica-rich lava and welded ignimbrites. Spherulites grow in silicate melts or hot glass and they display a radiating or microcrystalline texture, typically consisting of cristobalite, tridymite, and sanidine. Lithophysae are HTCDs comprising one or more cavities. This contribution reviews the research and discussions on HTCDs carried out over the last 200 years. The emphasis, here, is on lithophysae and summarizes current knowledge of their formation. A number of parameters influence the initiation and growth of lithophysae, as well as, their shapes and internal textures. The most likely cause of cavity formation is transient tensional stress that produces a mechanical opening and widening at the interface between the crystallization front and the host melt (e.g., where T > T g ). Cavity growth and expansion forced by rising vapor pressure is considered less important. In some cases, further growth of HTCD cavities results from vapor phase corrosion and brecciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Above the glass transition temperature (T g ), under low deformation rates, a silicate melt deforms in a ductile manner; below T g , it is considered a glass and incapable of viscous flow (Sakka and MacKenzie 1971). T g is controlled by the composition, in particular by the volatile content of the melt/glass.

References

  • Allport S (1877) On certain ancient devitrified pitchstones and perlites from the Lower Silurian District of Shropshire. Quart J Geol Soc 33:449–460

    Article  Google Scholar 

  • Anderson JE (1969) Development of a snowflake texture in a welded tuff, Davis Mountains, Texas. Geol Soc Amer Bull 80:2075–2080

    Article  Google Scholar 

  • Best M (2003) Igneous and metamorphic petrology. Blackwell, Malden, 729

    Google Scholar 

  • Beudant FS (1818) Voyage minéralogique et géologique en Hongrie. Verdière, Paris. Translation into German by von Kleinschrod CT (1825) Mineralogische und geognostische Reise durch Ungarn im Jahre 1818. Leipzig 345–369

  • Bonney TG (1882) On some nodular felsites in the Bala Group of north Wales. Quart J Geol Soc 38:289–297

    Article  Google Scholar 

  • Boyer C (1972) Study of a few Paleozoic ignimbrites in the Armorican Massif and in the Central Massif, France. Bull Volc 36:46–82

    Article  Google Scholar 

  • Breithaupt A (1849) Die Paragenesis der Mineralien—mineralogisch, geognostisch und chemisch beleuchtet, mit besonderer Rücksicht auf Bergbau. JG Engelhardt, Freiberg, 276

    Google Scholar 

  • Breitkreuz C, Eliwa H, Khalaf I, El Gameel K, Bühler B, Sergeev S, Larionov A, Murata M (2010) Neoproterozoic SHRIMP U-Pb zircon ages of silica-rich Dokhan Volcanics in the northern Eastern Desert, Egypt. Precam Res 182:163–174

    Article  Google Scholar 

  • Brun MA (1907) Cristallisation de l’obsidienne de Lipari. Archiv Sci Phys Natur Genève 24:97–98

    Google Scholar 

  • Bryan WH (1934) Some spherulitic growths from Queensland. Geol Mag 71:167–175

    Article  Google Scholar 

  • Bryan WH (1941) Spherulites and allied structures, part I. Proc Roy Soc Queensl Austral 52:41–53

    Google Scholar 

  • Bryan WH (1954) Spherulites and allied structures, part II–V. The spheruloids of Binna Burra. Proc Roy Soc Queensl Austral 65:51–69

    Google Scholar 

  • Bryan WH (1963) The later history of expanded spherulites. J Geol Soc Austral 10:141–150

    Article  Google Scholar 

  • Burkhard DJM (2003) Thermal interaction between lava lobes. Bull Volcanol 65:136–143

    Google Scholar 

  • Carmichael ISE (1979) Glass and glassy rocks. In: Yoder HS Jr (ed) The evolution of the igneous rocks—fiftieth anniversary perspectives. Princeton University Press, Princeton, New Jersey, pp 233–244

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions—modern and ancient. Unwin Hyman, London, 527pp

    Book  Google Scholar 

  • Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pahoehoe lava to Aa. Bull Volc 61:306–323

    Article  Google Scholar 

  • Castro JM, Beck P, Tuffen H, Nichols ARL, Dingwell DB, Martin MC (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Amer Min 93:1816–1822

    Article  Google Scholar 

  • Clay PL, O’Driscoll B, Gertisser R, Busemann H, Sherlock SC, Kelley SP (2013) Textural characterization, major and volatile element quantification and Ar–Ar systematics of spherulites in the Rocche Rosse obsidian flow, Lipari, Aeolian Islands: a temperature continuum growth model. Contrib Mineral Petrol 165:373–395

    Article  Google Scholar 

  • Cole GAJ (1885) On hollow spherulites and their occurrence in ancient British lavas. Quart J Geol Soc 41:162–169

    Article  Google Scholar 

  • Cole GAJ (1891) Devitrification of cracked and brecciated obsidian. Min Mag 9:p272

    Article  Google Scholar 

  • Cole GAJ, Butler GW (1892) On the lithophyses in the obsidian of the Rocche Rosse, Lipari. Quart J Geol Soc 48:438–446, Including an Appendix by GAJ Cole on “On lithophyses and hollow spherulites in altered rocks”, Discussions and Plates

    Article  Google Scholar 

  • Cross CW (1886) On the occurrence of topaz and garnet in lithophysae of rhyolite. Am J Sci 31:432–438

    Google Scholar 

  • Cross CW (1887) On some eruptive rocks from Custer County, Colorado. Proc Colorad Sci Soc vol 2 part 3:228–250

    Google Scholar 

  • Cross CW (1891) Constitution and origin of spherulites in acid eruptive rocks. Bull Phil Soc Wash 11:411–443

    Google Scholar 

  • Daubrée M (1879) translated to German and edited by Gurlt A (1880) Versuche über die Wirkung des überhitzten Wassers bei der Bildung von Silikaten. In: Etudes synthetiques de geologie experimentale. Imprim Roy 119–137

  • DeGroat-Nelson PJ, Cameron BI, Fink JH, Holloway JR (1999) Hydrogen isotope analysis of rehydrated silicic lavas: implications for eruption mechanisms. Earth Planet Sci Lett 185:331–341

    Article  Google Scholar 

  • Delesse M (1852) Recherches sur les roches globuleuses. Mem Soc Geol France ser 2(5):301–362

    Google Scholar 

  • Dingwell D, Webb S (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Phys Chem Minerals 16:508–516

    Article  Google Scholar 

  • Ewart A (1971) Chemical changes accompanying spherulitic crystallization in rhyolitic lavas, Central Volcanic Region, New Zealand. Min Mag 38:424–434

    Article  Google Scholar 

  • Fink J (1983) Structure and emplacement of a rhyolitic obsidian flow: little Glass Mountain, Medicine Highland, northern California. Geol Soc Amer Bull 94:362–380

    Article  Google Scholar 

  • Fritsch KV, Reiss W (1868) Geologische Beschreibung der Insel Tenerife. von Wurster, Winterthur, 494

    Google Scholar 

  • Geotti-Bianchini F, Brown JT, Faber AJ, Hessenkemper H, Kobayashi S, Smith IH (1999) Influence of water dissolved in the structure of soda–lime–silica glass on melting, forming and properties: state-of-the art and controversial issues. Glass Sci Techn 72:145–152

    Google Scholar 

  • Gottfried C (1933) Über Lithophysen aus dem Porphyr von Baden-Baden. Geol Rdsch 23:1–6

    Google Scholar 

  • Götze J, Tichomirowa M, Fuchs H, Pilot J, Sharp ZD (2001) Geochemistry of agates: a trace element and stable isotope study. Chem Geol 175:523–541

    Article  Google Scholar 

  • Grip E (1935) Die Arvidsjaurporphyre—Eine archaische Effusivgesteinsreihe im nördlichen Schweden. Bull Geol Inst Univ Upsala 25:198–220

    Google Scholar 

  • Harker A (1889) The Bala volcanic series of Caernarshire and associated rocks. Cambr Univ Press Warehouse, London, 130

    Google Scholar 

  • Hauer K (1866) Die Gesteine mit Lithophysenbildungen von Telki-Banya in Ungarn. Verhandl K K Geol Reichsanst 98–100

  • Hausback BP (1987) An extensive, hot, vapor-charged rhyodacite flow, Baja California, Mexico. Geol Soc Amer Spec Pap 212:111–118

    Article  Google Scholar 

  • Holmes A (1920) The nomenclature of petrology. Thos. Murby, London, 284

    Google Scholar 

  • Holzhey G (1994) Zur Ausbildung der Randfazies rhyolitischer Rotliegend-Vulkanite des Thüringer Waldes. Geowis Mit Türing 2:45–71

    Google Scholar 

  • Holzhey G (2001) Contribution to petrochemical–mineralogical characterization of alteration processes within the marginal facies of rhyolitic volcanics of Lower Permian age, Thuringian Forest, Germany. Chem Erde 61:149–186

    Google Scholar 

  • Holzhey G (2003) Mikrokristalline SiO2-Mineralisationen in rhyolitischen Rotliegend-Vulkaniten des Thüringer Waldes und ihre Genese. Aufschluss 54:95–110

    Google Scholar 

  • Hudyma NB, Burçin A, Karakouzian M (2004) Compressive strength and failure modes of lithophysae-rich Topopah Spring Tuff specimens and analog models containing cavities. Engin Geol 73:179–190

    Article  Google Scholar 

  • Iddings JP (1885a) On the occurrence of fayalite in the lithophyses of obsidian and rhyolite in the Yellowstone National Park. Amer J Sci 30:175–180

    Google Scholar 

  • Iddings JP (1885b) Obsidian Cliff, Yellowstone National Park. USGS, Seventh Ann Rep 1888:253–295

    Google Scholar 

  • Iddings JP (1887) The nature and origin of lithophysae and the lamination of acid lavas. Amer J Sci 33:36–45

    Google Scholar 

  • Iddings JP (1891) Spherulitic crystallization. Bull Phil Soc Wash 11:445–464

    Google Scholar 

  • Iddings JP (1899) The rhyolites. In: Hague A, Iddings JP, Werd WH, Walcott CD, Girty GH, Stanton TW, Knowlton FH: Geology of the Yellowstone National Park, part II, USGS Monogr 323:56–432

  • Jackson JA, Bates RL (1997) Glossary of geology. Amer Geol Inst, 769pp

  • Jebsen-Marwedel H, Brückner R (1980) Glastechnische Fabrikationsfehler—“Pathologische” Ausnahmezustände des Werkstoffes Glas und ihre Behebung, 3rd edn. Springer, Berlin, 623

    Google Scholar 

  • Jentsch F (2001) Zur Frage der Rhyolithkugelbildung. Veröff Mus Naturk Chemnitz 24:31–40

    Google Scholar 

  • Jenzsch GJS (1858) Verbreitung des Melaphyrs und Sanidinquarzporphyrs bei Zwickau in dem im Jahre 1858 in Abbau stehenden Theile des Steinkohlenbassins von Zwickau im Königreich Sachsen: nebst Andeutungen über die sogenannte Zwickauer Hauptverwerfung; mit einer geologischen Karte und einer Profiltafel. Z Deutsch Geol Ges A10:31–79

    Google Scholar 

  • Johannsen A (1931) A descriptive petrography of the igneous rocks. Univ Chicago Press, vol 1, 267pp

  • Junge F, Blankenburg H-J, Schmidt W (1985) Mineralogische Untersuchungen an einigen kugeligen Rhyolithaggregaten. Freiberg Forsch-Hefte C413:86–101

    Google Scholar 

  • Keith HD, Padden FJ (1963) A phenomenological theory of spherulite crystallization. J Appl Phys 34:2409–2421

    Article  Google Scholar 

  • Keith HD, Padden FJ (1964a) Spherulitic crystallization from the melt. I. Fractionation and impurity segregation and their influence on crystalline morphology. J Appl Phys 35:1270–1285

    Article  Google Scholar 

  • Keith HD, Padden FJ (1964b) Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on the kinetics of crystallization. J Appl Phys 35:1286–1296

    Article  Google Scholar 

  • Kshirsagar PV, Sheth HC, Seaman SJ, Shaikh B, Mohite P, Gurav T, Chandrasekharam D (2012) Spherulites and thundereggs from pitchstones of the Deccan Traps: geology, petrochemistry, and emplacement environments. Bull Volcanol 74:559–577

    Google Scholar 

  • Le Maitre RW (ed) (2002) Igneous rocks—a classification and glossary of terms. Cambr Univ Press, Cambridge, 236pp

    Google Scholar 

  • Liesegang RE (1913) Über schalig-diperse systeme. Kolloid-Zeitschr 12:269–273

    Article  Google Scholar 

  • Lofgren G (1971a) Spherulitic textures in glassy and crystalline rocks. J Geophys Res 76:5635–5648

    Article  Google Scholar 

  • Lofgren G (1971b) Experimentally produced devitrification textures in natural rhyolitic glass. Geol Soc Amer Bull 82:111–124

    Article  Google Scholar 

  • MacKenzie WS, Donaldson CH, Guilford C (1982) Atlas of igneous rocks and their textures. Wiley, New York, 148

    Google Scholar 

  • Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geol 15:549–552

    Article  Google Scholar 

  • Mari G (2008) Lithophyses—mines et mineraux de la Provence Cristalline, Maures, Esterel. Tanneron Ed Serre 179–192

  • Marshall P (1935) Acid rocks of Taupo-Rotorua volcanic district. Roy Soc New Zealand Trans 64:323–366

    Google Scholar 

  • Mathew WH, Watson KD (1953) Spherulitic alkali rhyolite dikes in the Atsutla Range, northern British Columbia. Amer Min 38:432–447

    Google Scholar 

  • McArthur AN, Cas RAF, Orton GJ (1998) Distribution and significance of crystalline, perlitic and vesicular textures in the Ordovician Garth Tuff (Wales). Bull Volc 60:260–285

    Article  Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures—a guide to the interpretation of textures in volcanic rocks. Univ Tasman CODES 196pp

  • Orth K, McPhie J (2003) Textures formed during emplacement and cooling of a Palaeoproterozoic, small-volume rhyolitic sill. J Volc Geotherm Res 128:341–362

    Article  Google Scholar 

  • Parkinson J (1898) On the pyromerides of Boulay Bay (Jersey). Quart J Geol Soc 54:101–118

    Article  Google Scholar 

  • Platt H (1915) Das Randgebiet des Thüringer Waldes bei Benshausen. Jb Deutsch Preuß Geol Landesanstalt 11:175–225

    Google Scholar 

  • Raisin CA (1889) On some nodular felstones of the Lleyn. Quart J Geol Soc 45:247–269

    Article  Google Scholar 

  • Raisin CA (1893) Variolite of the Lleyn, and associated volcanic rocks. Quart J Geol Soc 49:145–165

    Article  Google Scholar 

  • Robins B, Sandstå NR, Furnes H, de Wit M (2010) Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa. Bull Volc 72:579–592

    Article  Google Scholar 

  • Rose G (1827) Über den sogenannten krystallisierten Obsidian. Poggendorff Ann Phys Chem 10:323–326

    Article  Google Scholar 

  • Ross CS (1941) Origin and geometric form of chalcedony-filled spherulites from Oregon. Amer Min 26:727–732

    Google Scholar 

  • Ross CS, Smith RL (1961) Ash-flow tuffs: Their origin, geological relation and identification. USGS Prof Pap 366, 81pp (reprint in New Mex Geol Soc Spec Publ 9, 1980)

  • Roth J (1869) Petrographie der plutonischen Gesteine. In: Allgemeine und chemische Geologie. Abh Königl Akad Wiss: Berlin 168–169

  • Sakka S, MacKenzie JD (1971) Relationship between apparent glass transition temperature and liquidus temperature for inorganic glasses. J Non-Cryst Sol 6:145–162

    Google Scholar 

  • Sauer A (1893) Porphyrstudien. Mitt Großherz Bad Geol Landesanst 2:793–836

    Google Scholar 

  • Scrope GP (1827) Notice on the geology of the Ponza Isles. Trans Geol Soc Series 2(2):195–236

    Google Scholar 

  • Seaman SJ, Dyar MD, Marinkovic N (2009) The effects of heterogeneity in magma water concentration on the development of flow banding and spherulites in rhyolitic lava. J Volc Geotherm Res 183:157–169

    Article  Google Scholar 

  • Shelley D (1993) Igneous and metamorphic rocks under the microscope—classification, textures, microstructures and mineral preferred orientations. Chapman & Hall, London, 445

    Google Scholar 

  • Simons FS (1962) Devitrification dikes and giant spherulites from Klondyke, Arizona. Am Mineral 47:871–885

    Google Scholar 

  • Smith RK, Tremallo RL, Lofgren GE (2001) Growth of megaspherulites in a rhyolitic vitrophyre. Amer Min 86:589–600

    Google Scholar 

  • Sparks RSJ, Tait SR, Yanev Y (1999) Dense welding caused by volatile resorption. J Geol Soc 156:217–225

    Article  Google Scholar 

  • Stasiuk MV, Barclay J, Carroll MR, Jaupart C, Ratte JC, Sparks RSJ, Tait SR (1996) Degassing during magma ascent in the Mule Creek vent (U.S.A.). Bull Volc 58:117–130

    Article  Google Scholar 

  • Stevenson RJ, Briggs RM, Hodder APW (1994) Physical volcanology and emplacement history of the Ben Lomond rhyolite lava flow, Taupo Volcanic Centre, New Zealand. New Zealand J Geol Geophys 37:345–358

    Article  Google Scholar 

  • Streck M, Grunder A (1995) Crystallization and welding variations in a widespread ignimbrite sheet; the Rattlesnake Tuff, eastern Oregon, USA. Bull Volc 57:151–169

    Google Scholar 

  • Swanson SE (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Amer Min 62:966–978

    Google Scholar 

  • Swanson SE, Naney MT, Westrich HR, Eichelberger JC (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bull Volc 51:161–176

    Article  Google Scholar 

  • Szabó J (1866) Die Trachyte und Rhyolite der Umgebung von Tokaj. Jahrb K K geol Reichsanstalt 16:82–97

    Google Scholar 

  • Tenne CA (1885) Über die Gesteine des Cerro de las Navajas (Messerberg) Mexico. Z Deutsch Geol Gesell 37:610–620

    Google Scholar 

  • Vogelsang H (1875) Die Krystalliten. Cohen, Bonn, p 175

  • Von Cotta B (1855) Die Gesteinslehre. Von Engelhardt, Freiberg, 225

  • Von Richthofen F (1860) Studien aus den ungarisch-siebenbürgischen Trachytgebirgen. Jahrb K K Geol Reichsanstalt 11:180–182

    Google Scholar 

  • Wachendorf H (1971) Die Rhyolite und Basalte der Lebombos im Hinterland von Lorenco Marques (Mosambique). Geotekt Forsch 40:86

    Google Scholar 

  • Watkins J, Manga M, Huber C, Martin M (2009) Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles. Contrib Mineral Petrol 157:163–172

    Article  Google Scholar 

  • Webb S, Dingwell D (1990) Non-Newtonian rheology of igneous melts at high stresses and strain rates: experimental results for rhyolite, andesite, basalt, and nephelinite. J Geophys Res 95:15695–157901

    Article  Google Scholar 

  • Weiss CE (1877) Porphyrvorkommen des nördlichen Thüringer Waldes. Z Deutsch Geol Ges 29:418–423

    Google Scholar 

  • Weyl R (1940) Bewegungsspuren in Schwarzwälder Quarzporphyren. Oberrhein Geol Abh 11:79–92

    Google Scholar 

  • Willson JJ, Goddard P, Couch S, Viramonte JG (1999) Characterisation of the Quiron rhyolite of El Quevar volcanic complex, Salta.—14th Congr Geol Argent. Salta Actas 14:222–224

    Google Scholar 

  • Wimmenauer W (1985) Petrographie der magmatischen und metamorphen Gesteine. Enke, Stuttgart, 382

    Google Scholar 

  • Wright FE (1915) Obsidian from Hraftntinnuhryggur, Iceland: its lithophysae and surface markings. Geol Soc Amer Bull 26:255–286

    Google Scholar 

  • Zimmermann J (2010) Facies analysis of the Neoproterozoic “Wadi Abu Hammad Ignimbritic-Sedimentary-Succession” and its basement within the Ras Gharib Segment; North Eastern Desert, Egypt. Unpubl diploma thesis, TU Bergakademie Freiberg, Germany, 150pp

  • Zirkel F (1876) Microscopical petrography. U.S. Geol. Explor. 40th Parallel (King C) 6:297

Download references

Acknowledgments

My thanks go to Jonathan Fink for guiding a great 10-day field trip in 1997 to almost every obsidian flow in California and western Oregon! In the same year, Glen Embree was a generous host and guide to Snake River plain volcanics in eastern Idaho. Jose Viramonte from Salta is acknowledged for leading a field trip in 2007 to exceptionally large lithophysae in the Argentine Puna. Many thanks go to Shan de Silva for facilitating a month stay (lodging and office) in 2010 in the “Thunderegg” State Oregon. I appreciate continuous discussions with Jens Götze from Freiberg. Jens also helped with access to the collections of the Mineralogical Institute in Freiberg and to his private collection. Also, Steve Langer (Prineville, Oregon) kindly enough provided access to his great collection of lithophysae. Michael Magnus (TU Bergakademie Freiberg) contributed with excellent photos. I would also like to thank Heiko Hessenkemper and Sascha Matthes (Institute of Glass, Ceramics and Building Material at TU Bergakademie Freiberg) for inspiring discussions and for providing calculations on melt relaxation. Constructive and comprehensive reviews by Kelsie Dadd, Richard Hanson, and Kelly Russell, as well as careful and encouraging editing by Steven Self are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Breitkreuz.

Additional information

Editorial responsibility: S. Self

Electronic supplementary material

ESM 1

DOCX 16 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitkreuz, C. Spherulites and lithophysae—200 years of investigation on high-temperature crystallization domains in silica-rich volcanic rocks. Bull Volcanol 75, 705 (2013). https://doi.org/10.1007/s00445-013-0705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0705-6

Keywords

Navigation