Skip to main content
Log in

Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In order to control suitable mycelium morphology to obtain high lipase productivity by Rhizopus chinensis in submerged fermentation, the effects of fungal morphology on the lipase production by this strain both in shake flask and fermentor were investigated. Different inoculum level and shear stress were used to develop distinctive morphologies. Analyses and investigations both on micromorphology and macromorphology were performed. Study of micromorphology reveals that micromorphologies for dispersed mycelia and aggregated mycelia are different in cell shape, biosynthetic activity. Macromorphology and broth rheology study in fermentor indicate that pellet formation results in low broth viscosity. Under this condition, the oil can disperse sufficiently in broth which is very important for lipase production. These results indicate that morphology changes affected the lipase production significantly for R. chinensis and the aggregated mycelia were suggested to achieve high lipase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  Google Scholar 

  2. Thomas CR (1992) Image analysis: putting filamentous microorganisms in the picture. Trends Biotechnol 10:343–348

    Article  CAS  Google Scholar 

  3. Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384

    Article  CAS  Google Scholar 

  4. Papagianni M, Mattey M (2006) Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microb Cell Fact 5:12

    Article  Google Scholar 

  5. Patnaik PR (2000) Penicillin fermentation: mechanisms and models for industrial-scale bioreactors. Crit Rev Biotechnol 20:1–15

    Article  CAS  Google Scholar 

  6. Heydarian SM, Mirjalili N, Ison AP (1999) Effect of shear on morphology and erythromycin production in Saccharopolyspora erythraea fermentations. Bioprocess Eng 21:31–39

    CAS  Google Scholar 

  7. Tamura S, Park Y, Toriyama M, Okabe M (1997) Change of mycelial morphology in tylosin production by batch culture of Streptomyces fradiae under various shear conditions. J Ferment Bioeng 83:523–528

    Article  CAS  Google Scholar 

  8. Papagianni M, Moo-Young M (2002) Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects. Process Biochem 37:1271–1278

    Article  CAS  Google Scholar 

  9. Jin B, van Leeuwen JH, Patel B (1999) Mycelial morphology and fungal protein production from starch processing wastewater in submerged cultures of Aspergillus oryzae. Process Biochem 34:335–340

    Article  CAS  Google Scholar 

  10. El-Enshasy H, Hellmuth K, Rinas U (1999) Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger. Appl Biochem Biotechnol 81:1–11

    Article  CAS  Google Scholar 

  11. Spohr A, Carlsen M, Nielsen J, Villadsen J (1997) Morphological characterization of recombinant strains of Aspergillus oryzae producing alpha-amylase during batch cultivations. Biotechnol Lett 19:257–261

    Article  CAS  Google Scholar 

  12. Haack MB, Olsson L, Hansen K, Lantz AE (2006) Change in hyphal morphology of Aspergillus oryzae during fed-batch cultivation. Appl Microbiol Biotechnol 70:482–487

    Article  CAS  Google Scholar 

  13. Nakashima T, Kyotani S, Izumoto E, Fukuda H (1990) Cell aggregation as a trigger for enhancement of intracellular lipase production by a Rhizopus species. J Ferment Bioeng 70:85–89

    Article  CAS  Google Scholar 

  14. Oncul S, Tari C, Unluturk S (2007) Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor. Biotechnol Prog 23:836–845

    Google Scholar 

  15. Lim JS, Lee JH, Kim JM, Park SW, Kim SW (2006) Effects of morphology and rheology on neo-fructosyltransferase production by Penicillium citrinum. Biotechnol Bioprocess Eng 11:100–104

    Article  CAS  Google Scholar 

  16. Papagianni M, Nokes SE, Filer K (1999) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem 35:397–402

    Article  CAS  Google Scholar 

  17. Olsvisk ES, Kristiansen B (1994) Rheology of filamentous fermentations. Biotechnol Adv 12:1–39

    Article  Google Scholar 

  18. Peberdy JF (1994) Protein secretion in filamentous fungi-Trying to understand a highly productive black-box. Trends Biotechnol 12:50–57

    Article  CAS  Google Scholar 

  19. Metz B, Kossen NWF (1977) Growth of molds in form of pellets-Literature-review. Biotechnol Bioeng 19:781–799

    Article  CAS  Google Scholar 

  20. Xu Y, Wang D, Mu XQ, Zhao GA, Zhang KC (2002) Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinensis CCTCC M201021 in non-aqueous phase. J Mol Catal B-Enzym 18:29–37

    Article  Google Scholar 

  21. Teng Y, Xu Y (2008) Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresour Technol 99:3900–3907

    Article  CAS  Google Scholar 

  22. Dong W, Yan X, Yun T (2007) Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane. Bioprocess Biosys Eng 30:147–155

    Article  Google Scholar 

  23. Mitschka P (1982) Simple conversion of brookfield Rvt readings into viscosity functions. Rheol Acta 21:207–209

    Article  CAS  Google Scholar 

  24. Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11:93–98

    Article  CAS  Google Scholar 

  25. Tucker KG, Thomas CR (1992) Mycelial morphology: the effect of spore inoculum level. Biotechnol Lett 14:1071–1074

    Article  Google Scholar 

  26. Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC (2004) Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosyst Eng 26:315–323

    Article  CAS  Google Scholar 

  27. Du LX, Jia SJ, Lu FP (2003) Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production. Process Biochem 38:1643–1646

    Article  CAS  Google Scholar 

  28. McNeil B, Berry DR, Harvey LR, Grant A, White S (1998) Measurement of autolysis in submerged batch cultures of Penicillium chrysogenum. Biotechnol Bioeng 57:297–305

    Article  CAS  Google Scholar 

  29. Harvey LM, McNeil B, Berry DR, White S (1998) Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates. Enzyme Microb Technol 22:446–458

    Article  CAS  Google Scholar 

  30. Wosten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023

    CAS  Google Scholar 

  31. Braun S, Vechtlifshitz SE (1991) Mycellal morphology and metabolite production. Trends Biotechnol. Trends Biotechnol 9:63–68

    Google Scholar 

  32. Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR (2002) Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 77:815–826

    Article  CAS  Google Scholar 

  33. El-Enshasy H, Kleine J, Rinas U (2006) Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochem 41:2103–2112

    Article  CAS  Google Scholar 

  34. Olsvik E, Tucker KG, Thomas CR, Kristiansen B (1993) Correlation of Aspergillus niger broth rheological properties with biomass concentration and the shape of mycelial aggregates. Biotechnol Bioeng 42:1046–1052

    Article  CAS  Google Scholar 

  35. Riley GL, Tucker KG, Paul GC, Thomas CR (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol Bioeng 68:160–172

    Article  CAS  Google Scholar 

  36. Lopez JLC, Perez JAS, Sevilla JMF, Porcel EMR, Chisti Y (2005) Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J Biotechnol 116:61–77

    Article  Google Scholar 

  37. Gogus N, Tari C, Oncu S, Unluturk S, Tokatli F (2006) Relationship between morphology, rheology and polygalacturonase production by Aspergillus sojae ATCC 20235 in submerged cultures. Biochem Eng J 32:171–178

    Article  Google Scholar 

  38. Hille A, Neu TR, Hempel DC, Horn H (2005) Oxygen profiles and biomass distribution in biopellets of Aspergillus niger. Biotechnol Bioeng 92:614–623

    Article  CAS  Google Scholar 

  39. Viniegra-Gonzalez G, Favela-Torres E (2006) Why solid-state fermentation seems to be resistant to catabolite repression. Food Technol Biotechnol 44:397–406

    CAS  Google Scholar 

  40. Nakashima T, Fukuda H, Nojima Y, Nagai S (1989) Intracellular lipase production by Rhizopus chinensis using biomass support particles in a circulating bed fermenter. J Ferment Bioeng 68:19–24

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial supports of National Natural Science Foundation of China (3047006), the Program for Changjiang Scholars and Innovative Research Team in University (IRT0532), the Ministry of Education, PR China under Program for New Century Excellent Talents in University (NCET-04-0498), The National High Technology Research and Development Program of China (863) (2006AA020202) and Program for Hi-Tech Research of Jiangsu Province (BG2006011) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, Y., Xu, Y. & Wang, D. Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase. Bioprocess Biosyst Eng 32, 397–405 (2009). https://doi.org/10.1007/s00449-008-0259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0259-8

Keywords

Navigation