Skip to main content

Advertisement

Log in

Carboxymethyl cellulose and Pluronic F68 protect the dinoflagellate Protoceratium reticulatum against shear-associated damage

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The red-tide dinoflagellate Protoceratium reticulatum is shown to be protected against turbulence-associated damage by the use of the additives Pluronic F68 (PF68) and carboxymethyl cellulose (CMC) in the culture medium. Relative to agitated controls, these additives had a dose-dependent protective effect at concentrations of up to 0.4 and 0.5 g L−1 for CMC and F68, respectively. In static cultures, these additives inhibited growth directly or indirectly at a concentration of >0.5 g L−1. Compared to CMC, PF68 was a better protectant overall. Cell-specific production of yessotoxins was enhanced under elevated shear stress regimens so long as the turbulence intensity was insufficient to damage the cells outright. Shear-induced production of reactive oxygen species and direct effects of turbulence on the cell cycle contributed to the observed shear effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CMC:

Carboxymethyl cellulose

d p :

Diameter of the cells (m)

d s :

Diameter of the shake flask (m)

n :

Rotational speed of the shake flask (s−1)

PF68:

Pluronic F68

ROS:

Reactive oxygen species

t c :

Total cycle time (s)

t s :

Duration of the quiescent period within one agitation cycle (s)

t t :

Duration of turbulence within one agitation cycle (s)

V L :

Volume of the broth in the flask (m3)

YTX:

Yessotoxin

γ ar :

Reference value of average shear rate calculated using d p = 20.5 μm and seawater viscosity (s−1)

γ av :

Average shear rate (s−1)

γ t :

Applied shear rate (s−1)

μ L :

Viscosity of the broth (Pa s)

μ r :

Ratio of the maximum specific growth rates of the agitated culture and the corresponding static control

μ ra :

Ratio of the maximum specific growth rate in an agitated culture with protective additive and the maximum specific growth rate in an identically agitated culture but without the additive

ν :

Cycle frequency (= 1/t c) (s−1)

ρ L :

Density of the broth (kg m−3)

τ ar :

Reference value of average shear stress calculated using d p = 20.5 μm (Pa) and seawater viscosity (s−1)

τ av :

Average shear stress (Pa)

τ t :

Applied shear stress (Pa)

ϕ :

Fraction of the time shaken in one agitation cycle

References

  1. Wang DZ (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6:349–371

    Google Scholar 

  2. García Camacho F, Gallardo Rodríguez JJ, Sánchez Mirón A, Cerón García M, Belarbi EH, Chisti Y, Molina Grima E (2007) Biotechnological significance of toxic marine dinoflagellates. Biotech Adv 25:176–194

    Article  Google Scholar 

  3. Paz B, Daranás AH, Norte M, Riobó P, Franco J, Fernández JJ (2008) Yessotoxins, a group of marine polyether toxins: an overview. Mar Drugs 6:73–102

    CAS  Google Scholar 

  4. Watkins SM, Reich A, Fleming LE, Hammond R (2008) Neurotoxic shellfish poisoning. Mar Drugs 6:431–455

    Article  CAS  Google Scholar 

  5. Wong JTY, Kwok ACM (2005) Proliferation of dinoflagellates: blooming or bleaching. BioEssays 27:730–740

    Article  Google Scholar 

  6. Berdalet E (1992) Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii. J Phycol 28:267–272

    Article  Google Scholar 

  7. Juhl AR, Latz MI (2002) Mechanisms of fluid shear-induced inhibition of population growth in a red-tide dinoflagellate. J Phycol 38:683–694

    Article  Google Scholar 

  8. Juhl AR, Velázquez V, Latz MI (2000) Effect of growth conditions on flow-induced inhibition of population growth of a red-tide dinoflagellate. Limnol Oceanogr 45:905–915

    Article  Google Scholar 

  9. Pollingher U, Zemel E (1981) In situ and experimental-evidence of the influence of turbulence on cell-division processes of Peridinium cinctum Forma Westii (Lemm) Lefevre. Br Phycol J 16:281–287

    Article  Google Scholar 

  10. Yeung PKK, Wong JTY (2003) Inhibition of cell proliferation by mechanical agitation involves transient cell cycle arrest at G1 phase in dinoflagellates. Protoplasma 220:173–178

    Article  CAS  Google Scholar 

  11. García Camacho F, Gallardo Rodríguez JJ, Sánchez Mirón A, Cerón García M, Belarbi EH, Molina Grima E (2007) Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks. Implications in bioprocess engineering. Process Biochem 42:1506–1515

    Article  Google Scholar 

  12. Yeung PKK, Lam CMC, Ma ZY, Wong YH, Wong JTY (2006) Involvement of calcium mobilization from caffeine-sensitive stores in mechanically induced cell cycle arrest in the dinoflagellate Crypthecodinium cohnii. Cell Calcium 39:259–274

    Article  CAS  Google Scholar 

  13. Gallardo Rodríguez JJ, Sánchez Mirón A, García Camacho F, Cerón García M, Belarbi EH, Chisti Y, Molina Grima E (2010) Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production. Process Biochem 45:660–666

    Article  Google Scholar 

  14. Mallipattu SK, Haidekker MA, Von Dassow P, Latz MI, Frangos JA (2002) Evidence for shear-induced increase in membrane fluidity in the dinoflagellate Lingulodinium polyedrum. J Com Physiol A Neuroethol Sens Neural Behav Physiol 188:409–416

    Article  CAS  Google Scholar 

  15. Al-Rubeai M, Emery AN, Chalder S (1992) The effect of Pluronic F-68 on hybridoma cells in continuous culture. Appl Microbiol Biotechnol 37:44–45

    Article  CAS  Google Scholar 

  16. Chisti Y (1999) Shear sensitivity. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 5. Wiley, New York

  17. Chisti Y (2001) Hydrodynamic damage to animal cells. Crc Crit Rev Biotechnol 21:67–110

    Article  CAS  Google Scholar 

  18. García Camacho F, Molina Grima E, Sánchez Mirón A, González Pascual V, Chisti Y (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microb Tech 29:602–610

    Article  Google Scholar 

  19. Sánchez Mirón A, Cerón García M, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  Google Scholar 

  20. Gallardo Rodríguez JJ, Cerón García M, García Camacho F, Sánchez Mirón A, Belarbi EH, Molina Grima E (2007) New culture approaches for yessotoxin production from the dinoflagellate Protoceratium reticulatum. Biotechnol Progr 23:339–350

    Article  Google Scholar 

  21. Díaz J, Serrano E, Acosta F, Carbonell L (1998) Lipoperoxides kit evaluated for measuring lipoperoxides in biological samples: reference intervals for human plasma. Clin Biochem 31:277–279

    Article  Google Scholar 

  22. Paz B, Riobó P, Fraga S, Franco JM, Fernández ML (2004) Production and release of yessotoxins by the dinoflagellates Protoceratium reticulatum and Lingulodinium polyedrum in culture. Toxicon 44:251–258

    Article  CAS  Google Scholar 

  23. Molina Grima E, Acién Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  24. Gallardo Rodríguez JJ, Sánchez Mirón A, García Camacho F, Cerón García M, Belarbi EH, Chisti Y, Molina Grima E (2009) Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol Progr 25:792–800

    Article  Google Scholar 

  25. Chisti Y (2000) Animal-cell damage in sparged bioreactors. Trends Biotechnol 18:420–432

    Article  CAS  Google Scholar 

  26. Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A (1999) Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr Biol 9:1061–1064

    Article  CAS  Google Scholar 

  27. Juhl AR, Trainer VL, Latz MI (2001) Effect of fluid shear and irradiance on population growth and cellular toxin content of the dinoflagellate Alexandrium fundyense. Limnol Oceanogr 46:758–764

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Education and Science (AGL2005-07924-C04-04) and the Spanish Ministry of Science and Innovation (CTQ2008-06754-C04-02/PPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. García Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo Rodríguez, J.J., Sánchez Mirón, A., García Camacho, F. et al. Carboxymethyl cellulose and Pluronic F68 protect the dinoflagellate Protoceratium reticulatum against shear-associated damage. Bioprocess Biosyst Eng 34, 3–12 (2011). https://doi.org/10.1007/s00449-010-0441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0441-7

Keywords

Navigation