Skip to main content
Log in

Encapsulation in a sol–gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lipase from Aspergillus niger was obtained from the solid-state fermentation of a novel agroindustrial residue, pumpkin seed flour. The partially purified enzyme was encapsulated in a sol–gel matrix, resulting in an immobilization yield of 71.4 %. The optimum pH levels of the free and encapsulated enzymes were 4.0 and 3.0, respectively. The encapsulated enzyme showed greater thermal stability at temperatures of 45 and 60 °C than the free enzyme. The positive influence of the encapsulation process was observed on the thermal stability of the enzyme, since a longer half-life t 1/2 and lower deactivation constant were obtained with the encapsulated lipase when compared with the free lipase. Kinetic parameters were found to follow the Michaelis–Menten equation. The K m values indicated that the encapsulation process reduced enzyme–substrate affinity and the V max was about 31.3 % lower than that obtained with the free lipase. The operational stability was investigated, showing 50 % relative activity up to six cycles of reuse at pH 3.0 at 37 °C. Nevertheless, the production of lipase from agroindustrial residue associated with an efficient immobilization method, which promotes good catalytic properties of the enzyme, makes the process economically viable for future industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Contesini FJ, Lopes DB, Macedo GA, Nascimento MG, Carvalho PO (2010) Aspergillus sp. Lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171

    Article  CAS  Google Scholar 

  2. Couto SR, Sanroma′n MA (2006) Application of solid-state fermentation to food industry-A review. J Food Eng 76:291–302

    Article  CAS  Google Scholar 

  3. Edwinoliver NG, Thirunavukarasu K, Naidu RB, Gowthaman MK, Kambe TN, Kamini NR (2010) Scale-up of a novel of a tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour Technol 101:6791–6796

    Article  CAS  Google Scholar 

  4. Salihu A, Alam MZ, Karim IA, Salleh HM (2012) Lipase production: an insight in the utilization of renewable agricultural residues. Resour Conserv Recycl 58:36–44

    Article  Google Scholar 

  5. Colla LM, Rizzardi J, Pinto MH, Reinehr CO, Bertolin TE, Costa JAV (2010) Simultaneous production of lipases and biosurfactants by submerged and solid substrate process. Bioresour Technol 101:8308–8314

    Article  CAS  Google Scholar 

  6. Contesini FJ, Da Silva VCF, Maciel RF, Lima RJ, Barros FFC, Oliveira POJ (2009) Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation. J Microbiol 47:563–571

    Article  CAS  Google Scholar 

  7. Santos RCA, Araújo KB, Soares CMF, Aquino LCL (2012) Evaluation of temperature and moisture response surface on the fermentation of lipase pumpkin seeds using Aspergillus niger. Acta Sci Technol 34(3):255–260

    Article  CAS  Google Scholar 

  8. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotech Adv 19:627–662

    Article  CAS  Google Scholar 

  9. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microbial Technol 39:235–251

    Article  CAS  Google Scholar 

  10. Chaubey A, Parshad R, Taneja SC, Qazi GN (2009) Arthrobacter sp. lipase immobilization on magnetic sol–gel composite supports for enantioselectivity improvement. Process Biochem 44:154–160

    Article  CAS  Google Scholar 

  11. Yilmaz E, Sezgin M, Yilmaz M (2011) Immobilization of Candida rugosa lipase on magnetic sol–gel composite supports for enzymatic resolution of (R/S)-Naproxen methyl ester. J Mol Catal B Enzym 69:35–41

    Article  CAS  Google Scholar 

  12. Yang G, Wu J, Xu G, Yang L (2009) Improvement of catalytic properties of lipase from Arthrobacter sp. by encapsulation in hydrophobic sol–gel materials. Bioresour Technol 100:4311–4316

    Article  CAS  Google Scholar 

  13. Yang G, Wu J, Xu G, Yang L (2010) Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids Surf B 78:351–356

    Article  CAS  Google Scholar 

  14. Kartal F, Akkaya A, Kilinc A (2009) Immobilization of porcine pancreatic lipase on glycidyl methacrylate grafted poly vinyl alcohol. J Mol Catal B Enzym 57:55–61

    Article  CAS  Google Scholar 

  15. Orrego CE, Salgado N, Valencia JS, Giraldo GI, Giraldo OH, Cardona CA (2010) Novel chitosan membranes as support for lipases immobilization: characterization aspects. Carbohyd Polym 79:9–16

    Article  CAS  Google Scholar 

  16. Rodrigues DS, Mendes AA, Adriano WS, Gonçalves LRB, Giordano RLC (2008) Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J Mol Catal B Enzym 51:100–109

    Article  CAS  Google Scholar 

  17. Yujun W, Jian X, Guangsheng L, Youyuan D (2008) Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Bioresour Technol 99:2299–2303

    Article  Google Scholar 

  18. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilization. Chem Soc Rev 38:46–453

    Article  Google Scholar 

  19. Gupta R, Chaudhury NK (2007) Entrapment of biomolecules in sol–gel matrix for applications in biosensors: problems and future prospects. Biosens Bioelectron 22:2387–2399

    Article  CAS  Google Scholar 

  20. Tomin A, Weiser D, Hellner G, Bata Z, Corici L, Peter F, Koczka B, Poppe L (2011) Fine-tuning the second generation sol–gel lipase immobilization with ternary alkoxysilane precursor systems. Process Biochem 46:52–58

    Article  CAS  Google Scholar 

  21. Souza RL, Resende WC, Barao CE, Zanin GM, Castro HF, Santos OAA, Fricks AT, Figueiredo RT, Lima AS, Soares CMF (2012) Influence of the use of Aliquat 336 in the immobilization procedure in sol–gel of lipase from Bacillus sp. ITP-001. J Mol Catal B Enzym 84:152–159

    Article  CAS  Google Scholar 

  22. Hara P, Hanefeld U, Kanerva LT (2008) Sol–gels and cross-linked aggregates of lipase PS from Burkholderia cepacia and their application in dry organic solvents. J Mol Catal B Enzym 50:80–86

    Article  CAS  Google Scholar 

  23. Kharrat N, Ali YB, Marzouk S, Gargouri Y-T, Karra-Chaabouni M (2011) Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochem 46:1083–1089

    Article  CAS  Google Scholar 

  24. Pirozzi D, Fanelli E, Aronne A, Pernice P, Mingione A (2009) Lipase entrapment in a zirconia matrix: sol–gel synthesis and catalytic properties. J Mol Catal B Enzym 59:116–120

    Article  CAS  Google Scholar 

  25. Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol–gel materials. Biotechnol Bioeng 49:527–534

    Article  CAS  Google Scholar 

  26. Wolski E, Menusi E, Remonatto D, Vardanega R, Arbter F, Rigo E, Ninow J, Mazutti MA, Di Luccio M, Oliveira D, Treichel H (2009) Partial characterization of lipases produced by a newly isolated Penicillium sp. in solid state and submerged fermentation: a comparative study. Food Sci Technol 42:557–1560

    Article  Google Scholar 

  27. INPI Patent submission No. PI0306829-3, September 11 2003

  28. Pinheiro R, Soares C, Santos OA, Castro HF, Zanin GM (2008) Influence of gelation time on the morphological and physic-chemical properties of the sol–gel entrapped lipase. J Mol Catal B Enzym 52–53:27–33

    Article  Google Scholar 

  29. Soares CMF, Santos OA, Moraes FF, Castro HF, Zanin GM (2006) Characterization of sol–gel encapsulated lipase using tetraethoxysilane as precursor. J Mol Catal B Enzym 39:69–79

    Article  CAS  Google Scholar 

  30. Grobecker KH, Rückold S, Anklam E (1999) Report of the European Commission EUR 19005 EN, European Commission

  31. Soares CMF, Castro HF, Moraes FF, Zanin GM (1999) Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl Biochem Biotechnol 77–79:745–758

    Article  Google Scholar 

  32. Soares CMF, Santos OAA, Castro HF, Morae FF, Zanin GM (2004) Studies on lipase immobilization in hydrophobic sol–gel matrix. Appl Biochem Biotechnol 113–116:307–319

    Article  Google Scholar 

  33. Uyanik A, Sen N, Yilmaz M (2011) Improvement of catalytic activity of lipase from Candida rugosa via sol–gel encapsulation in the presence of calix(aza)crown. Bioresour Technol 102:4313–4318

    Article  CAS  Google Scholar 

  34. Soares CMF, Santos OAA, Olivo JE, Castro HF, Moraes FF, Zanin GM (2004) Influence of alkyl-substituted silane precursors of silica gels on the enzymatic activity of immobilized microbial lipase from Candida rugosa. J Mol Catal B Enzym 29:69–79

    Article  CAS  Google Scholar 

  35. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721

    Article  CAS  Google Scholar 

  36. Saxena RK, Davidson WS, Sheron A, Giri B (2003) Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem 39:239–247

    Article  CAS  Google Scholar 

  37. Mhetras NC, Bastawde KB, Gokhale DV (2009) Purification and characterization of acidic lipase frm Aspergillus niger NCIM 1207. Bioresour Technol 100:1486–1490

    Article  CAS  Google Scholar 

  38. Da Silva VCF, Contesini FJ, Carvalho PO (2008) Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: a comparative study. J Braz Chem Soc 19(8):1468–1474

    Article  Google Scholar 

  39. Romero CM, Pera LM, Loto F, Vallejos C, Castro G, Baigori MD (2012) Purification of an organic solvent-tolerant lipase from Aspergillus niger MYA 135 and its application in ester synthesis. Biocatal Agr Biotechnol 1:25–31

    CAS  Google Scholar 

  40. Balcão VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzym Microb Technol 18:392–416

    Article  Google Scholar 

  41. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  42. Hiol A, Jonzo MD, Rugani N, Druet D, Sarda L, Comeau LC (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzym Microb Technol 26:421–430

    Article  CAS  Google Scholar 

  43. Gupta S, Yogesh Javiya S, Bhambi M, Pundir CS, Singh K, Bhattacharya A (2008) Comparative study of performances of lipase immobilized asymmetric polysulfone and polyether sulfone membranes in olive oil hydrolysis. Int J Biol Macromol 42:145–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Coordination of Improvement of Personal Level Foundation (CAPES, Brazil) for the graduate scholarship granted, and the Foundation for Research and Technological Innovation of Sergipe State (FAPITEC/SE) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Cristina Lins de Aquino Santana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubiolo, C., Santos, R.C.A., Carvalho, N.B. et al. Encapsulation in a sol–gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue. Bioprocess Biosyst Eng 37, 1781–1788 (2014). https://doi.org/10.1007/s00449-014-1151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1151-3

Keywords

Navigation