Skip to main content

Advertisement

Log in

Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp.

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgae of Nannochloropsis sp. present valuable source of bio-molecules (pigments, lipids, proteins) that have nutritional potential for the prevention and treatment of human diseases. Moreover, some species of Nannochloropsis are the promising sources of biofuels and excellent candidates for the replacement of classical biofuel crops. This review describes and compares the efficiency of different conventional and novel techniques that can be used for cell disruption and recovery of bio-molecules from Nannochloropsis sp. Classification of different extraction techniques includes chemical, enzymatic, mechanical and other physical methods. The detailed analysis of extraction efficiency assisted by pressure and temperature (subcritical and supercritical fluids, hydrothermal liquefaction), ultrasound, microwaves, and pulsed electric energy (pulsed electric fields and high voltage electrical discharges) is presented. The general discussion includes comparison between techniques, their effectiveness for cell disruption and selectivity of bio-molecules extraction from Nannochloropsis sp. The cost-effectiveness, benefits and limitations of different techniques are also analyzed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from [75]

Fig. 5

Adapted from [45]

Similar content being viewed by others

References

  1. Makri A, Bellou S, Birkou M et al (2011) Lipid synthesized by micro-algae grown in laboratory-and industrial-scale bioreactors. Eng Life Sci 11:52–58

    Article  CAS  Google Scholar 

  2. Ariede MB, Candido TM, Jacome ALM et al (2017) Cosmetic attributes of algae—a review. Algal Res 25:483–487

    Article  Google Scholar 

  3. Giordano M, Wang Q (2018) Microalgae for industrial purposes. In: Biomass and green chemistry. Springer, pp 133–167

  4. Raheem A, Prinsen P, Vuppaladadiyam AK et al (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59

    Article  CAS  Google Scholar 

  5. Bellou S, Triantaphyllidou I-E, Aggeli D et al (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35

    Article  CAS  PubMed  Google Scholar 

  6. Bellou S, Baeshen MN, Elazzazy AM et al (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493

    Article  CAS  PubMed  Google Scholar 

  7. Bellou S, Aggelis G (2013) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329

    Article  CAS  Google Scholar 

  8. Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  9. Khetkorn W, Rastogi RP, Incharoensakdi A et al (2017) Microalgal hydrogen production—a review. Biores Technol 243:1194–1206

    Article  CAS  Google Scholar 

  10. Bux F (2013) Biotechnological applications of microalgae. Biodiesel and value-added products. CRC Press, Boca Raton

    Book  Google Scholar 

  11. Bustillos LGT (2015) Microalgae and other phototrophic bacteria: culture, processing, recovery and new products. Nova Science Pub Inc, New York

    Google Scholar 

  12. Dourou M, Tsolcha ON, Tekerlekopoulou AG et al (2018) Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Eng Life Sci. https://doi.org/10.1002/elsc.201800064

    Article  Google Scholar 

  13. Malibari R, Sayegh F, Elazzazy AM et al (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from red sea–Jeddah. J Clean Prod 198:160–169

    Article  CAS  Google Scholar 

  14. Günerken E, d’Hondt E, Eppink MHM et al (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260

    Article  CAS  PubMed  Google Scholar 

  15. Vermuë MH, Eppink MHM, Wijffels RH et al (2018) Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol 36(2):216–227

    Article  CAS  PubMed  Google Scholar 

  16. Fietz S, Bleiß W, Hepperle D et al (2005) First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from Lake Baikal. J Phycol 41:780–790

    Article  Google Scholar 

  17. Gu N, Lin Q, Li G et al (2012) Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng Life Sci 12:631–637

    Article  CAS  Google Scholar 

  18. Lin J-H, Lee D-J, Chang J-S (2015) Lutein production from biomass: Marigold flowers versus microalgae. Biores Technol 184:421–428

    Article  CAS  Google Scholar 

  19. Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Biores Technol 114:457–465

    Article  CAS  Google Scholar 

  20. Lee SY, Cho JM, Chang YK, Oh Y-K (2017) Cell disruption and lipid extraction for microalgal biorefineries: a review. Biores Technol 244:1317–1328

    Article  CAS  Google Scholar 

  21. Beacham TA, Bradley C, White DA et al (2014) Lipid productivity and cell wall ultrastructure of six strains of Nannochloropsis: implications for biofuel production and downstream processing. Algal Res 6:64–69

    Article  Google Scholar 

  22. D’Hondt E, Martín-Juárez J, Bolado S et al (2017) 6 - Cell disruption technologies. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts. Woodhead Publishing Books – Elsevier, Sawston, Cambridge, pp 133–154

    Chapter  Google Scholar 

  23. Safi C, Charton M, Pignolet O et al (2013) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J Appl Phycol 25:523–529

    Article  CAS  Google Scholar 

  24. Kumar SPJ, Kumar GV, Dash A et al (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 21:138–147

    Article  Google Scholar 

  25. Zhang F, Cheng L-H, Xu X-H et al (2011) Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem 46:1934–1941

    Article  CAS  Google Scholar 

  26. Chua ET, Schenk PM (2017) A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresource Technol 244(Part 2):1416–1424

    Article  CAS  Google Scholar 

  27. Moradi-Kheibari N, Ahmadzadeh H, Hosseini M (2017) Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess Biosyst Eng 40:1363–1373

    Article  CAS  PubMed  Google Scholar 

  28. Chatsungnoen T, Chisti Y (2016) Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Res 15:100–109

    Article  Google Scholar 

  29. Xu L, Brilman DWFW, Withag JAM et al (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Biores Technol 102:5113–5122

    Article  CAS  Google Scholar 

  30. Choi S-A, Jung J-Y, Kim K et al (2014) Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioprocess Biosyst Eng 37:2199–2204

    Article  CAS  PubMed  Google Scholar 

  31. Olkiewicz M, Caporgno MP, Font J et al (2015) A novel recovery process for lipids from microalgae for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824

    Article  CAS  Google Scholar 

  32. Park J-Y, Park MS, Lee Y-C, Yang J-W (2015) Advances in direct transesterification of algal oils from wet biomass. Biores Technol 184:267–275

    Article  CAS  Google Scholar 

  33. Chen L, Li R, Ren X, Liu T (2016) Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica. Biores Technol 214:138–143

    Article  CAS  Google Scholar 

  34. Samorì C, Barreiro DL, Vet R et al (2013) Effective lipid extraction from algae cultures using switchable solvents. Green Chem 15:353–356

    Article  CAS  Google Scholar 

  35. Long RD, Abdelkader E, others (2011) Mixed-polarity azeotropic solvents for efficient extraction of lipids from Nannochloropsis microalgae. Am J Biochem Biotechnol 7:70–73

    Article  Google Scholar 

  36. Marić M, Grassino AN, Zhu Z et al (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37

    Article  CAS  Google Scholar 

  37. Zhu Z, Li S, He J et al (2018) Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: ultra-filtration performance and HPLC-MS2 profile. Food Res Int 111:291–298

    Article  CAS  PubMed  Google Scholar 

  38. Zuorro A, Miglietta S, Familiari G, Lavecchia R (2016) Enhanced lipid recovery from Nannochloropsis microalgae by treatment with optimized cell wall degrading enzyme mixtures. Biores Technol 212:35–41

    Article  CAS  Google Scholar 

  39. Maffei G, Bracciale MP, Broggi A et al (2018) Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Biores Technol 249:592–598

    Article  CAS  Google Scholar 

  40. Wu C, Xiao Y, Lin W et al (2017) Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp. Biores Technol 223:312–316

    Article  CAS  Google Scholar 

  41. Safi C, Olivieri G, Campos RP et al (2017) Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Biores Technol 225:151–158

    Article  CAS  Google Scholar 

  42. Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology, Second Edition. Wiley-Blackwell, Hoboken

  43. Kwak M, Kang SG, Hong W-K et al (2018) Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer. Bioprocess Biosyst Eng 41:671–678

    Article  CAS  PubMed  Google Scholar 

  44. Lee D-J, Chang J-S, Lai J-Y (2015) Microalgae–microbial fuel cell: a mini review. Biores Technol 198:891–895

    Article  CAS  Google Scholar 

  45. Grimi N, Dubois A, Marchal L et al (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Biores Technol 153:254–259

    Article  CAS  Google Scholar 

  46. Abbassi A, Ali M, Watson IA (2014) Temperature dependency of cell wall destruction of microalgae with liquid nitrogen pretreatment and hydraulic pressing. Algal Res 5:190–194

    Article  Google Scholar 

  47. Yen H-W, Yang S-C, Chen C-H et al (2015) Supercritical fluid extraction of valuable compounds from microalgal biomass. Biores Technol 184:291–296

    Article  CAS  Google Scholar 

  48. Sánchez-Camargo DP, Ibáñez A, Cifuentes E, Herrero A M (2017) Bioactives obtained from plants, seaweeds, microalgae and food by-products using pressurized liquid extraction and supercritical fluid extraction. Compr Analytical Chem 76:27–51

    Article  Google Scholar 

  49. Patel B, Guo M, Izadpanah A et al (2016) A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. Biores Technol 199:288–299

    Article  CAS  Google Scholar 

  50. Lorenzen J, Igl N, Tippelt M et al (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng 40:911–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Caporgno MP, Pruvost J, Legrand J et al (2016) Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents. Biores Technol 214:404–410

    Article  CAS  Google Scholar 

  52. Barreiro DL, Riede S, Hornung U et al (2015) Hydrothermal liquefaction of microalgae: effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Res 12:206–212

    Article  Google Scholar 

  53. Chemat F, Rombaut N, Sicaire A-G et al (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  54. Greenly JM, Tester JW (2015) Ultrasonic cavitation for disruption of microalgae. Biores Technol 184:276–279

    Article  CAS  Google Scholar 

  55. Natarajan R, Ang WMR, Chen X et al (2014) Lipid releasing characteristics of microalgae species through continuous ultrasonication. Biores Technol 158:7–11

    Article  CAS  Google Scholar 

  56. Bermúdez Menéndez JM, Arenillas A, Menéndez Díaz J et al (2014) Optimization of microalgae oil extraction under ultrasound and microwave irradiation. J Chem Technol Biotechnol 89:1779–1784

    Article  CAS  Google Scholar 

  57. Parniakov O, Apicella E, Koubaa M et al (2015) Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis sp. Biores Technol 198:262–267

    Article  CAS  Google Scholar 

  58. Ferreira AF, Dias APS, Silva CM, Costa M (2016) Effect of low frequency ultrasound on microalgae solvent extraction: analysis of products, energy consumption and emissions. Algal Res 14:9–16

    Article  Google Scholar 

  59. Eldalatony MM, Kabra AN, Hwang J-H et al (2016) Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess Biosyst Eng 39:95–103

    Article  CAS  PubMed  Google Scholar 

  60. Wang M, Yuan W, Jiang X et al (2014) Disruption of microalgal cells using high-frequency focused ultrasound. Biores Technol 153:315–321

    Article  CAS  Google Scholar 

  61. Wang M, Yuan W (2015) Microalgal cell disruption in a high-power ultrasonic flow system. Biores Technol 193:171–177

    Article  CAS  Google Scholar 

  62. Li H, Qu Y, Yang Y et al (2016) Microwave irradiation–a green and efficient way to pretreat biomass. Bioresour Technol 199:34–41

    Article  CAS  PubMed  Google Scholar 

  63. Iqbal J, Theegala C (2013) Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res 2:34–42

    Article  Google Scholar 

  64. Biller P, Friedman C, Ross AB (2013) Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Biores Technol 136:188–195

    Article  CAS  Google Scholar 

  65. Loong TC, Idris A (2014) Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization. Biores Technol 174:311–315

    Article  CAS  Google Scholar 

  66. Teo CL, Idris A (2014) Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Biores Technol 171:477–481

    Article  CAS  Google Scholar 

  67. Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Biores Technol 102:4265–4269

    Article  CAS  Google Scholar 

  68. Wahidin S, Idris A, Shaleh SRM (2016) Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Biores Technol 206:150–154

    Article  CAS  Google Scholar 

  69. Patil PD, Reddy H, Muppaneni T et al (2013) In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Biores Technol 139:308–315

    Article  CAS  Google Scholar 

  70. Teo CL, Idris A (2014) Evaluation of direct transesterification of microalgae using microwave irradiation. Biores Technol 174:281–286

    Article  CAS  Google Scholar 

  71. Barba FJ, Parniakov O, Pereira SA et al (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798

    Article  Google Scholar 

  72. Safi C, Rodriguez LC, Mulder WJ et al (2017) Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Biores Technol 239:204–210

    Article  CAS  Google Scholar 

  73. Postma PR, Pataro G, Capitoli M et al (2016) Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field–temperature treatment. Biores Technol 203:80–88

    Article  CAS  Google Scholar 

  74. Parniakov O, Barba FJ, Grimi N et al (2015) Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae Nannochloropsis spp. using the binary mixture of organic solvents and water. Innovative Food Sci Emerg Technol 27:79–85

    Article  CAS  Google Scholar 

  75. Parniakov O, Barba FJ, Grimi N et al (2015) Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae nannochloropsis. Algal Res 8:128–134

    Article  Google Scholar 

  76. Coustets M, Joubert-Durigneux V, Hérault J et al (2015) Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry 103:74–81

    Article  CAS  PubMed  Google Scholar 

  77. Martínez JM, Luengo E, Saldaña G et al (2016) C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Res Int 99:1042–1047

    Article  CAS  PubMed  Google Scholar 

  78. Luengo E, Martínez JM, Bordetas A et al (2015) Influence of the treatment medium temperature on lutein extraction assisted by pulsed electric fields from Chlorella vulgaris. Innov Food Sci Emerg Technol 29:15–22

    Article  CAS  Google Scholar 

  79. Zbinden MDA, Sturm BSM, Nord RD et al (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110:1605–1615

    Article  CAS  PubMed  Google Scholar 

  80. Lai YS, Parameswaran P, Li A et al (2014) Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Biores Technol 173:457–461

    Article  CAS  Google Scholar 

  81. Eing C, Goettel M, Straessner R et al (2013) Pulsed electric field treatment of microalgae—benefits for microalgae biomass processing. IEEE Trans Plasma Sci 41:2901–2907

    Article  CAS  Google Scholar 

  82. Silve A, Papachristou I, Wüstner R et al (2018) Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. Algal Res 29:212–222

    Article  Google Scholar 

Download references

Acknowledgements

Rui Zhang would like to acknowledge the financial support of China Scholarship Council for thesis fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Parniakov, O., Grimi, N. et al. Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp.. Bioprocess Biosyst Eng 42, 173–186 (2019). https://doi.org/10.1007/s00449-018-2038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2038-5

Keywords

Navigation