Skip to main content

Advertisement

Log in

Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed to characterize the biofilm microbial community that causes corrosion of API 5LX carbon steel. API 5LX carbon steel coupons were incubated with raw produced water collected from two oil reservoir stations or filter-sterilized produced water. Biofilm 16S rRNA amplicon sequencing revealed that the bacterial community present in the biofilm was dominated by Proteobacteria, including Marinobacter hydrocarbonoclaustics and Marinobacter alkaliphilus. Electrochemical analysis such as impedance and polarization results indicated that Proteobacteria biofilm accelerated corrosion by ~ twofold (2.1 ± 0.61 mm/years) or ~ fourfold (~ 3.7 ± 0.42 mm/years) when compared to the control treatment (0.95 ± 0.1 mm/years). Scanning electron and atomic force microscopy revealed the presence of a thick biofilm and pitting corrosion. X-ray diffraction revealed higher amounts of the corrosion products Fe2O3, γ-FeOOH, and α-FeOOH, and confirmed that the microbial biofilm strongly oxidized the iron and contributed to the acceleration of corrosion of carbon metal API 5LX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Silva TR, Verde LCL, Santos Neto EV, Oliveira VM (2013) Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. Int Biodeterior Biodegrad 81:57–70. https://doi.org/10.1016/j.ibiod.2012.05.005

    Article  CAS  Google Scholar 

  2. Lv L, Zhou L, Wang LY, Liu JF, Gu JD, Mu BZ, Yang SZ (2016) Selective inhibition of methanogenesis by sulfate in enrichment culture with production water from low-temperature oil reservoir. Int Biodeterior Biodegrad 108:133–141. https://doi.org/10.1016/j.ibiod.2015.11.002

    Article  CAS  Google Scholar 

  3. Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale. Appl Environ Microbiol 77:4744–4753. https://doi.org/10.1128/AEM.00233-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Santillan EFU, Choi W, Bennett PC, Diouma Leyris J (2015) The effects of biocide use on the microbiology and geochemistry of produced water in the Eagle Ford formation, Texas, U.S.A. J Pet Sci Eng 135:1–9. https://doi.org/10.1016/j.petrol.2015.07.028

    Article  CAS  Google Scholar 

  5. Struchtemeyer CG, Elshahed MS, Rosas O, Basseguy R, Sztyler M, Beech IB (2012) Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA. FEMS Microbiol Ecol 81:13–25. https://doi.org/10.1111/j.1574-6941.2011.01196.x

    Article  CAS  PubMed  Google Scholar 

  6. Wuchter C, Banning E, Mincer TJ, Drenzek NJ, Coolen MJ (2013) Microbial diversity and methanogenic activity of antrim shale formation waters from recently fractured wells. Front Microbiol 4:1–14. https://doi.org/10.3389/fmicb.2013.00367

    Article  Google Scholar 

  7. Dawson JL, John G, Oliver K (2010) Management of corrosion in the oil and gas industry. Shreir’s Corros. https://doi.org/10.1016/B978-044452787-5.00168-2

    Article  Google Scholar 

  8. Shahriar A, Sadiq R, Tesfamariam S (2012) Risk analysis for oil & gas pipelines: a sustainability assessment approach using fuzzy based bow-tie analysis. J Loss Prev Process Ind 25:505–523. https://doi.org/10.1016/j.jlp.2011.12.007

    Article  Google Scholar 

  9. Suflita JM, Aktas DF, Oldham AL, Perez-Ibarra BM, Duncan K (2012) Molecular tools to track bacteria responsible for fuel deterioration and microbiologically influenced corrosion. Biofouling 28:1003–1010. https://doi.org/10.1080/08927014.2012.723695

    Article  CAS  PubMed  Google Scholar 

  10. Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Bonifay V, Biri B, Suflita JM (2014) Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 30:823–835. https://doi.org/10.1080/08927014.2014.931379

    Article  PubMed  Google Scholar 

  11. Stipanicev M, Turcu F, Esnault L et al (2014) Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: Laboratory investigation. Bioelectrochemistry 97:76–88. https://doi.org/10.1016/j.bioelechem.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Narenkumar J, Elumalai P, Subashchandrabose S, Megharaj M, Balagurunathan R, Murugan K, Rajasekar A (2019) Role of 2-mercaptopyridine on control of microbial influenced corrosion of copper CW024A metal in cooling water system. Chemosphere 222:611–618. https://doi.org/10.1016/j.chemosphere.2019.01.193

    Article  CAS  PubMed  Google Scholar 

  13. Elumalai P, Parthipan P, Narenkumar J, Anandakumar B, Madhavan J, Oh BT, Rajasekar A (2019) Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. Biotech 9:79. https://doi.org/10.1007/s13205-019-1604-0

    Article  Google Scholar 

  14. Parthipan P, Elumalai P, Ting YP, Rahman PKS, Rajasekar A (2018) Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. Int Biodeterior Biodegrad 129:67–80. https://doi.org/10.1016/j.ibiod.2018.01.006

    Article  CAS  Google Scholar 

  15. Landoulsi J, Cooksey KE, Dupres V (2011) Review—interactions between diatoms and stainless steel: focus on biofouling and biocorrosion. Biofouling 27:1105–1124. https://doi.org/10.1080/08927014.2011.629043

    Article  CAS  Google Scholar 

  16. Li CY, Li JY, Mbadinga SM, Liu JF, Gu JD, Mu BZ (2015) Analysis of bacterial and archaeal communities along a high-molecular-weight polyacrylamide transportation pipeline system in an oil field. Int J Mol Sci 16:7445–7461. https://doi.org/10.3390/ijms16047445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parthipan P, Narenkumar J, Elumalai P, Preethi PS, Nanthini AUR, Agrawal A, Rajasekar A (2017) Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. J Mol Liq 240:121–127. https://doi.org/10.1016/j.molliq.2017.05.059

    Article  CAS  Google Scholar 

  18. Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2007) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60:74–84. https://doi.org/10.1111/j.1574-6941.2006.00266.x

    Article  CAS  PubMed  Google Scholar 

  19. Anandkumar B, George RP, Tamilvani S, Kamachi NP, Mudali U (2011) Studies on microbiologically influenced corrosion of SS304 by a novel manganese oxidizer, Bacillus flexus. Biofouling 27:675–683. https://doi.org/10.1080/08927014.2011.597001

    Article  CAS  PubMed  Google Scholar 

  20. Emerson D (2018) The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling 34:989–1000. https://doi.org/10.1080/08927014.2018.1526281

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Ma Y, Duan J, Li X, Wang J, Hou B (2019) Analysis of marine microbial communities colonizing various metallic materials and rust layers. Biofouling 35:429–442. https://doi.org/10.1080/08927014.2019.1610881

    Article  CAS  PubMed  Google Scholar 

  22. Pillay C, Lin J (2013) Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: effects of additional nitrate sources. Int Biodeterior Biodegrad 83:158–165. https://doi.org/10.1016/j.ibiod.2013.05.013

    Article  CAS  Google Scholar 

  23. Yuan SJ, Choong AMF, Pehkonen SO (2007) The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corros Sci 49:4352–4385. https://doi.org/10.1016/j.corsci.2007.04.009

    Article  CAS  Google Scholar 

  24. Herrera LK, Videla HA (2009) Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int Biodeterior Biodegrad 63:891–895. https://doi.org/10.1016/j.ibiod.2009.06.003

    Article  CAS  Google Scholar 

  25. Hilbert LR, Bagge-Ravn D, Kold J, Gram L (2003) Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. Int Biodeterior Biodegrad 52:175–185. https://doi.org/10.1016/S0964-8305(03)00104-5

    Article  CAS  Google Scholar 

  26. Bermont-Bouis D, Janvier M, Grimont PAD, Dupont I, Vallaeys T (2007) Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J Appl Microbiol 102:161–168. https://doi.org/10.1111/j.1365-2672.2006.03053.x

    Article  CAS  PubMed  Google Scholar 

  27. Vastra M, Salvin P, Roos C (2016) MIC of carbon steel in Amazonian environment: electrochemical, biological and surface analyses. Int Biodeterior Biodegrad 112:98–107. https://doi.org/10.1016/j.ibiod.2016.05.004

    Article  CAS  Google Scholar 

  28. Dheilly A, Linossier I, Darchen A, Hadjiev D, Corbel C, Alonso V (2008) Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl Microbiol Biotechnol 79:157–164. https://doi.org/10.1007/s00253-008-1404-7

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Melchers RE (2017) Corrosion of carbon steel in presence of mixed deposits under stagnant seawater conditions. J Loss Prev Process Ind 45:29–42. https://doi.org/10.1016/j.jlp.2016.11.013

    Article  CAS  Google Scholar 

  30. Elumalai P, Parthipan P, Narenkumar J, Sarankumar S, Karthikeyan OB, Rajasekar A (2017) Influence of thermophilic bacteria on corrosion of carbon steel in hyper chloride environment. Int J Environ Res 11:339–347. https://doi.org/10.1007/s41742-017-0031-5

    Article  CAS  Google Scholar 

  31. Rajasekar A, Xiao W, Sethuraman M, Elumalai P (2017) Airborne microorganisms associated with corrosion of structural engineering materials. Environ Sci Pollut Res 24(9):8120–8136. https://doi.org/10.1007/s11356-017-8501-z

    Article  CAS  Google Scholar 

  32. Han L, Shaobin H, Zhendong W, Pengfei C, Yongqing Z (2016) Performance of a new suspended filler biofilter for removal of nitrogen oxides under thermophilic conditions and microbial community analysis. Sci Total Environ 562:533–541. https://doi.org/10.1016/j.scitotenv.2016.04.084

    Article  CAS  PubMed  Google Scholar 

  33. Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35:73. https://doi.org/10.1007/s11274-019-2647-4

    Article  CAS  PubMed  Google Scholar 

  34. Parthipan P, Elumalai P, Narenkumar J, Machuca LL, Murugan K, Karthikeyan OP, Rajasekar A (2018) Allium sativum (garlic extract) as a green corrosion inhibitor with biocidal properties for the control of MIC in carbon steel and stainless steel in oilfield environments. Int Biodeterior Biodegrad 132:66–73. https://doi.org/10.1016/j.ibiod.2018.05.005

    Article  CAS  Google Scholar 

  35. Huttunen-Saarivirta E, Honkanen M, Lepistö T, Kuokkala VT, Koivisto L, Bergc CG (2012) Microbiologically influenced corrosion (MIC) in stainless steel heat exchanger. Appl Surf Sci 258:6512–6526. https://doi.org/10.1016/j.apsusc.2012.03.068

    Article  CAS  Google Scholar 

  36. Rajasekar A, Anandkumar B, Maruthamuthu S, Ting YP, Rahman PK (2010) Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotechnol 85:1175–1188. https://doi.org/10.1007/s00253-009-2289-9

    Article  CAS  PubMed  Google Scholar 

  37. Teng F, Guan YT, Zhu WP (2008) Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation. Corros Sci 50:2816–2823. https://doi.org/10.1016/j.corsci.2008.07.008

    Article  CAS  Google Scholar 

  38. Narenkumar J, Parthipan P, Madhavan J, Murugan K, Marpu SB, Suresh AK, Rajasekar A (2018) Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environ Sci Pollut Res 25:5412. https://doi.org/10.1007/s11356-017-0768-6

    Article  CAS  Google Scholar 

  39. Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G (2012) The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel. Mater Sci Eng C 32:303–309. https://doi.org/10.1016/j.msec.2011.10.033

    Article  CAS  Google Scholar 

  40. Marconnet C, Dagbert C, Roy M, Féron D (2008) Stainless steel ennoblement in freshwater: from exposure tests to mechanisms. Corros Sci 50:2342–2352. https://doi.org/10.1016/j.corsci.2008.05.007

    Article  CAS  Google Scholar 

  41. Moos O, Gümpel P (2008) Comparison of the microbiological influence on the electro-chemical potential of stainless steel between macro- and micro-areas of specimens. Electrochim Acta 54:53–59. https://doi.org/10.1016/j.electacta.2008.01.105

    Article  CAS  Google Scholar 

  42. Angel P (1999) Understanding microbially influenced corrosion mediated changes in surface chemistry as biofilm. Curr Opin Biotechnol 10:269–272

    Article  Google Scholar 

  43. Procopio L (2020) Changes in microbial community in the presence of oil and chemical dispersant and their effects on the corrosion of API 5L steel coupons in a marine-simulated microcosm. Appl Microbiol Biotechnol 104:6397–6411. https://doi.org/10.1007/s00253-020-10688-8

    Article  CAS  PubMed  Google Scholar 

  44. Junzhang L, Bin H, Gongzhe C, Jing W, Yun F, Xiaoming T, Weidong W (2014) A study on the microbial community structure in oil reservoirs developed by water flooding. J Petrol Sci Eng 122:354–359. https://doi.org/10.1016/j.petrol.2014.07.030

    Article  CAS  Google Scholar 

  45. Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14:1772–1787. https://doi.org/10.1111/j.1462-2920.2012.02778.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Venzlaff H, Enning D, Srinivasan J, Mayrhofer K, Hassel AW, Widdel F, Stratmann M (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96. https://doi.org/10.1016/j.corsci.2012.09.006

    Article  CAS  Google Scholar 

  47. Li XX, Mbadinga SM, Liu JF, Zhou L, Yang SZ, Gu JD, Mu BZ (2017) Microbiota and their affiliation with physiochemical characteristics of different subsurface petroleum reservoirs. Int Biodeterior Biodegrad 120:170–185. https://doi.org/10.1016/j.ibiod.2017.02.005

    Article  CAS  Google Scholar 

  48. Okoro C, Ekun OA, Nwume MI, Lin J (2016) Molecular analysis of microbial community structures in Nigerian oilproduction and processing facilities in order to access souringcorrosion and methanogenesis. Corro Sci 103:242–254. https://doi.org/10.1016/j.corsci.2015.11.024

    Article  CAS  Google Scholar 

  49. Mbadinga SM, Wang LY, Zhou L, Liu JF, Gu JD, Mu BZ (2011) Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegrad 65:1–13. https://doi.org/10.1016/j.ibiod.2010.11.009

    Article  CAS  Google Scholar 

  50. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic Bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol 51:433–446. https://doi.org/10.1099/00207713-51-2-433

    Article  CAS  PubMed  Google Scholar 

  51. Wei L, Ma F, Zhao L, Zhang Z, Wang Q (2008) The molecular biology identification of a hydrolyzed polycrylamide (HPAM) degrading bacreria strain H5 and biodegradation product analysis. J Biotech 136:S669. https://doi.org/10.1016/j.jbiotec.2008.07.1552

    Article  Google Scholar 

  52. Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum Microbiology. ASM Press, Washington, pp 21–34

    Google Scholar 

  53. Elumalai P, Parthipan P, Karthikeyan OP, Rajasekar A (2017) Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. Biotech 7:116. https://doi.org/10.1007/s13205-017-0773-y

    Article  Google Scholar 

  54. Tsesmetzis N, Alsop EB, Vigneron A, Marcelis F, Head IM, Lomans BP (2016) Microbial community analysis of three hydrocarbon reservoir coresprovides valuable insights for the assessment of reservoir souring potential. Int Biodeterior Biodegrad 126:177–188. https://doi.org/10.1016/j.ibiod.2016.09.002

    Article  CAS  Google Scholar 

  55. Guan J, Xia LP, Wang LY, Liu JF, Gu JD, Mua BZ (2013) Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. Int Biodeterior Biodegrad 76:58–66. https://doi.org/10.1016/j.ibiod.2012.06.021

    Article  CAS  Google Scholar 

  56. Song B, Palleroni NJ, Häggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453. https://doi.org/10.1128/AEM.66.8.3446-3453.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cornish Shartau SL, Yurkiw M, Lin S, Grigoryan AA, Lambo A, Park HS, Lomans BP, van der Biezen E, Jetten MS, Voordouw G (2010) Ammonium concentrations in produced waters from a mesothermic oil field subjected to nitrate injection decrease through formation of denitrifying biomass and anammox activity. Appl Environ Microbiol 76:4977–4987. https://doi.org/10.1128/AEM.00596-10

    Article  CAS  PubMed Central  Google Scholar 

  58. Li XX, Liu JF, Yao F, Wu WL, Yang SZ, Mbadinga SM, Gu JD, Mu BZ (2016) Dominance of Desulfotignum in sulfate-reducing community in high sulfate production-water of high temperature and corrosive petroleum reservoirs. Int Biodeterior Biodegrad 114:45–56. https://doi.org/10.1016/j.ibiod.2016.05.018

    Article  CAS  Google Scholar 

  59. Borenstein SW (1994) Microbiologically influenced corrosion handbook. Woodhead, Cambridge

    Book  Google Scholar 

  60. Karn SK, Fang G, Duan J (2017) Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel (CS). Front Microbiol 8:2038. https://doi.org/10.3389/fmicb.2017.02038

    Article  PubMed  PubMed Central  Google Scholar 

  61. Little B (1998) The role of biomineralization in microbiologically influenced corrosion. Biodegradation 9:1–10. https://doi.org/10.1023/A:1008264313065

    Article  CAS  PubMed  Google Scholar 

  62. Busalmen JP, Vázquez M, De Sánchez R (2002) New evidences on the catalase mechanism of microbial corrosion. Electrochim Acta 47:1857–1865. https://doi.org/10.1016/S0013-4686(01)00899-4

    Article  CAS  Google Scholar 

  63. Muthukumar N, Mohanan S, Maruthamuthu S, Subramanian P, Palaniswamy N, Raghavan M (2003) Role of Gallionella sp. and Brucella sp. in oil degradation and corrosion. Electrochem Commun 5:421–425. https://doi.org/10.1016/S1388-2481(03)00093-6

    Article  CAS  Google Scholar 

  64. Juzeliunas E, Ramanauskas R, Lugauskas A, Leinartas K, Samulevicien M, Sudavicius A (2006) Influence of wild strain Bacillus mycoideson metals: from corrosion acceleration to environmentally friendly protection. Electrochim Acta 51:6085–6090. https://doi.org/10.1016/j.electacta.2006.01.067

    Article  CAS  Google Scholar 

  65. Ress J, Monrrabal G, Díaz A, Pérez-Pérez J, Bastidas JM, Bastidas DM (2020) Microbiologically influenced corrosion of welded aisi 304 stainless steel pipe in well water. Eng Fail Anal 116:104734. https://doi.org/10.1016/j.engfailanal.2020.104734

    Article  CAS  Google Scholar 

  66. Vincle E, Boon N, Verstraete W (2001) Analysis of the microbial communities on corroded concrete sewer pipes—a case study. Appl Microbiol Biotechnol 57:776–785. https://doi.org/10.1007/s002530100826

    Article  Google Scholar 

  67. Beale DJ, Morrison PD, Key C, Palombo EA (2014) Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion. Water Sci Tech 69:1–8. https://doi.org/10.2166/wst.2013.425

    Article  CAS  Google Scholar 

  68. Salerno JL, Little B, Lee J, Hamdan LJ (2018) Exposure to crude oil and chemical dispersant may impact marine microbial biofilm composition and steel corrosion. Front Mar Sci 5:196. https://doi.org/10.3389/fmars.2018.00196

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB (Proj. File.No. EEQ/2016/000449). The authors are grateful to the Researchers Supporting Project Number (RSP-2020/68), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamad S. AlSalhi or Aruliah Rajasekar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elumalai, P., AlSalhi, M.S., Mehariya, S. et al. Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment. Bioprocess Biosyst Eng 44, 355–368 (2021). https://doi.org/10.1007/s00449-020-02447-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02447-w

Keywords

Navigation