Skip to main content

Advertisement

Log in

Effect of Zr doping on photoantioxidant and antibiofilm properties of CeO2 NPs fabricated using aqueous leaf extract of Pometia pinnata

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Synthesized cerium oxide nanoparticles (S-CeO2 NPs) and 1%, 5% and 10% zirconium doped CeO2 (Zr-doped CeO2) NPs were fabricated using aqueous leaf extract of Pometia pinnata. The synthesized NPs were characterized using standard techniques which confirmed successful synthesis of NPs with particle size ranging from 12 to 23 nm and band gap energy of 2.54–2.66 eV. Photoantioxidant activities showed enhanced activities under visible light irradiation in comparison to the dark condition in the dose-dependent study. Biofilm inhibition studies showed ~ 73% biofilm inhibition of Staphylococcus aureus at 512 µg/mL for S-CeO2, whereas 10% Zr-doped CeO2 NPs showed biofilm inhibition of 52.7%. The bactericidal tests showed killing properties at 1024 µg/mL of S-CeO2 NPs and at 512 µg/mL of 1% Zr-doped CeO2. Reduced bactericidal activities were observed for 5% and 10% Zr-doped CeO2. These studies showed that the fabricated NPs have both good photoantioxidant and antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sha MA, Meenu PC, Sumi VS, Bhagya TC, Sreelekshmy BR, Shibli SMA (2020) Tuning of electron transfer by Ni–P decoration on CeO2–TiO2 heterojunction for enhancement in photocatalytic hydrogen generation. Mater Sci Semicond Process 105:104742. https://doi.org/10.1016/j.mssp.2019.104742

    Article  CAS  Google Scholar 

  2. Mousavi-Kamazani M, Azizi F (2019) Facile sonochemical synthesis of Cu doped CeO2 nanostructures as a novel dual-functional photocatalytic adsorbent. Ultrason Sonochem 58:104695. https://doi.org/10.1016/j.ultsonch.2019.104695

    Article  CAS  PubMed  Google Scholar 

  3. Tao X, Cong W, Huang L, Xu D (2019) CeO2 photocatalysts derived from Ce-MOFs synthesized with DBD plasma method for methyl orange degradation. J Alloys Compd 805:1060–1070. https://doi.org/10.1016/j.jallcom.2019.07.179

    Article  CAS  Google Scholar 

  4. Sangsefidi FS, Salavati-Niasari M, Mazaheri S, Sabet M (2017) Controlled green synthesis and characterization of CeO2 nanostructures as materials for the determination of ascorbic acid. J Mol Liq 241:772–781. https://doi.org/10.1016/j.molliq.2017.06.078

    Article  CAS  Google Scholar 

  5. Nithyavathy N, Rajendran V, Berchmans LJ, Maaza M, Krithika S, Arunmetha S (2017) Gas sensing behaviour of cerium oxide and magnesium aluminate composites. Bull Mater Sci 40:667–682. https://doi.org/10.1007/s12034-017-1422-0

    Article  CAS  Google Scholar 

  6. Zheng Y, Wang A, Cai W, Wang Z, Peng F, Liu Z, Fu L (2016) Hydrothermal preparation of reduced graphene oxide–silver nanocomposite using Plectranthusamboinicus leaf extract and its electrochemical performance. Enzyme Microb Technol 95:112–117. https://doi.org/10.1016/j.enzmictec.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  7. Sebastiammal S, Mariappan A, Neyvasagam K, Lesly Fathima A (2019) Annona muricata inspired synthesis of CeO2 nanoparticles and their antimicrobial activity. Mater Today Proc 9:627–632. https://doi.org/10.1016/j.matpr.2018.10.385

    Article  CAS  Google Scholar 

  8. Elango M, Deepa M, Subramanian R, Saraswathy G (2020) Investigation of structural, morphological and antimicrobial properties of polyindole/Ag doped CeO2 nanocomposites. Mater Today Proc 26:3544–3551. https://doi.org/10.1016/j.matpr.2019.07.246

    Article  CAS  Google Scholar 

  9. Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B (2016) Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol B Biol 163:77–86. https://doi.org/10.1016/j.jphotobiol.2016.08.013

    Article  CAS  Google Scholar 

  10. Surendra TV, Roopan SM (2016) Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringaoleifera peel extract. J Photochem Photobiol B Biol 161:122–128. https://doi.org/10.1016/j.jphotobiol.2016.05.019

    Article  CAS  Google Scholar 

  11. Bakkiyaraj R, Balakrishnan M, Bharath G, Ponpandian N (2017) Facile synthesis, structural characterization, photocatalytic and antimicrobial activities of Zr doped CeO2 nanoparticles. J Alloys Compd 724:555–564. https://doi.org/10.1016/j.jallcom.2017.07.049

    Article  CAS  Google Scholar 

  12. Kumar PSV, Suresh L, Vinodkumar T, Reddy BM, Chandramouli GVP (2016) Zirconium doped ceria nanoparticles: an efficient and reusable catalyst for a green multicomponent synthesis of novel phenyldiazenyl-chromene derivatives using aqueous medium, ACS sustain. Chem Eng 4:2376–2386. https://doi.org/10.1021/acssuschemeng.6b00056

    Article  CAS  Google Scholar 

  13. Xie A, Wang S, Liu W, Zhang J, Yang Y, Han J (2015) Rapid hydrothermal synthesis of CeO2 nanoparticles with (220)-dominated surface and its CO catalytic performance. Mater Res Bull 62:148–152. https://doi.org/10.1016/j.materresbull.2014.11.029

    Article  CAS  Google Scholar 

  14. Khan MM, Saadah NH, Khan ME, Harunsani MH, Tan AL, Cho MH (2019) Potentials of Costuswoodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Mater Sci Semicond Process 91:194–200. https://doi.org/10.1016/j.mssp.2018.11.030

    Article  CAS  Google Scholar 

  15. Matussin S, Harunsani MH, Tan AL, Khan MM (2020) Plant extract-mediated SnO2 nanoparticles : synthesis and applications. ACS Sustain Chem Eng 8:3040–3054. https://doi.org/10.1021/acssuschemeng.9b06398

    Article  CAS  Google Scholar 

  16. Rahman A, Harunsani MH, Tan AL, Khan MM (2021) Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 44:1333–1372. https://doi.org/10.1007/s00449-021-02530-w

    Article  CAS  PubMed  Google Scholar 

  17. Naidi SN, Harunsani MH, Tan AL, Khan MM (2021) Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 9:5599–5620. https://doi.org/10.1039/D1TB00248A

    Article  CAS  PubMed  Google Scholar 

  18. Kannan SK, Sundrarajan M (2014) A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci 13:1450018. https://doi.org/10.1142/S0219581X14500185

    Article  CAS  Google Scholar 

  19. Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, Anwaar S, Abbas F, Jan T (2016) Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomedicine 11:5015–5025. https://doi.org/10.2147/IJN.S113508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A, Pitchaimuthu S (2019) Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater Lett 239:40–44

    Article  CAS  Google Scholar 

  21. Suedee A, Tewtrakul S, Panichayupakaranant P (2013) Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharm Biol 51:1256–1261. https://doi.org/10.3109/13880209.2013.786098

    Article  CAS  PubMed  Google Scholar 

  22. Purwidyaningrum I, Sukandar EY, Fidrianny I (2017) Diuretic activity of matoa leaves extracts (pometia pinnata) and its influence on potassium and sodium levels. Asian J Pharm Clin Res. https://doi.org/10.22159/ajpcr.2017.v10s2.19481

    Article  Google Scholar 

  23. Handayani W, Ningrum AS, Imawan C (2020) The role of pH in synthesis silver nanoparticles using pometia pinnata (matoa) leaves extract as bioreductor. J Phys Conf Ser 1428:6–11. https://doi.org/10.1088/1742-6596/1428/1/012021

    Article  CAS  Google Scholar 

  24. Ningrum AS, Pridyantari AP, Handayani W, Secario K, Djuhana D, Imawan C (2020) Green synthesis of silver nanoparticles using leaf and stem bark extract of Pometia pinnata J.R. Forst and G. Forst. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/481/1/012018

    Article  Google Scholar 

  25. Syarifah S, Imawan C, Handayani W, Djuhana D (2018) Biosynthesis of ferric oxide nanoparticles using Pometia pinnata J.R.Frost. & G.Forst. leaves water extract. https://doi.org/10.1063/1.5064051.

  26. Dhall A, Self W (2018) Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 7:1–13. https://doi.org/10.3390/antiox7080097

    Article  CAS  Google Scholar 

  27. Javadi F, Yazdi MET, Baghani M, Es-haghi A (2019) Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater Res Express. https://doi.org/10.1088/2053-1591/ab08ff

    Article  Google Scholar 

  28. Soh M, Kang D-W, Jeong H-G, Kim D, Kim DY, Yang W, Song C, Baik S, Choi I-Y, Ki S-K, Kwon HJ, Kim T, Kim CK, Lee S-H, Hyeon T (2017) Ceria-zirconia nanoparticles as enhanced multi-antioxidant for sepsis treatment. Angew Chemie Int Ed 56:11399–11403. https://doi.org/10.1002/anie.201704904

    Article  CAS  Google Scholar 

  29. Matussin SN, Tan AL, Harunsani MH, Mohammad A, Cho MH, Khan MM (2020) Effect of Ni-doping on the properties of the SnO2 synthesized using Tradescantiaspathacea for photoantioxidant studies. Mater Chem Phys 252:123293. https://doi.org/10.1016/j.matchemphys.2020.123293

    Article  CAS  Google Scholar 

  30. Matussin SN, Harunsani MH, Tan AL, Cho MH, Khan MM (2020) Effect of Co2+ and Ni2+ co-doping on SnO2 synthesized via phytogenic method for photoantioxidant studies and photoconversion of 4-nitrophenol. Mater Today Commun 25:101677. https://doi.org/10.1016/j.mtcomm.2020.101677

    Article  CAS  Google Scholar 

  31. Matussin SN, Tan AL, Harunsani MH, Cho MH, Khan MM (2021) Green and phytogenic fabrication of Co-doped SnO2 using aqueous leaf extract of Tradescantiaspathacea for photoantioxidant and photocatalytic studies. Bionanosci 11:120–135. https://doi.org/10.1007/s12668-020-00820-3

    Article  Google Scholar 

  32. Matussin SN, Harunsani MH, Tan AL, Mohammad A, Cho MH, Khan MM (2020) Photoantioxidant studies of the SnO2 nanoparticles fabricated using aqueous leaf extract of Tradescantiaspathacea. Solid State Sci 105:106279. https://doi.org/10.1016/j.solidstatesciences.2020.106279

    Article  CAS  Google Scholar 

  33. Rahman A, Harunsani MH, Tan AL, Ahmad N, Hojamberdiev M, Khan MM (2021) Effect of Mg doping on ZnO fabricated using aqueous leaf extract of Ziziphusmauritiana Lam. for antioxidant and antibacterial studies. Bioprocess Biosyst Eng 44:875–889. https://doi.org/10.1007/s00449-020-02496-1

    Article  CAS  PubMed  Google Scholar 

  34. Rahman A, Harunsani MH, Tan AL, Ahmad N, Min BK, Khan MM (2021) Influence of Mg and Cu dual-doping on phytogenic synthesized ZnO for light induced antibacterial and radical scavenging activities. Mater Sci Semicond Process 128:105761. https://doi.org/10.1016/j.mssp.2021.105761

    Article  CAS  Google Scholar 

  35. Rahman A, Harunsani MH, Tan AL, Ahmad N, Khan MM (2021) Antioxidant and antibacterial studies of phytogenic fabricated ZnO using aqueous leaf extract of Ziziphusmauritiana Lam. Chem Pap 75:3295–3308. https://doi.org/10.1007/s11696-021-01553-7

    Article  CAS  Google Scholar 

  36. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58. https://doi.org/10.1111/apm.12099

    Article  CAS  Google Scholar 

  37. Khan MM, Ansari SA, Lee JH, Lee J, Cho MH (2014) Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies. ACS Sustain Chem Eng 2:423–432. https://doi.org/10.1021/sc400330r

    Article  CAS  Google Scholar 

  38. Yin W, Wang Y, Liu L, He J (2019) Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 20:3423. https://doi.org/10.3390/ijms20143423

    Article  CAS  PubMed Central  Google Scholar 

  39. Naidi SN, Khan F, Tan AL, Harunsani MH, Kim Y-M, Khan MM (2021) Photoantioxidant and antibiofilm studies of green synthesized Sn-doped CeO2 nanoparticles using aqueous leaf extracts of Pometia pinnata. New J Chem 45:7816–7829. https://doi.org/10.1039/D1NJ00416F

    Article  CAS  Google Scholar 

  40. Naidi SN, Khan F, Tan AL, Harunsani MH, Kim Y-M, Khan MM (2021) Green synthesis of CeO2 and Zr/Sn-dual doped CeO2 nanoparticles with photoantioxidant and antibiofilm activities. Biomater Sci. https://doi.org/10.1039/D1BM00298H

    Article  PubMed  Google Scholar 

  41. Khan F, Manivasagan P, Pham DTN, Oh J, Kim SK, Kim YM (2019) Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog 128:363–373. https://doi.org/10.1016/j.micpath.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  42. Khan F, Lee JW, Manivasagan P, Pham DTN, Oh J, Kim YM (2019) Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb Pathog 135:103623. https://doi.org/10.1016/j.micpath.2019.103623

    Article  CAS  PubMed  Google Scholar 

  43. Raj AKV, Rao PP, Sreena TS, Thara TRA (2017) Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions. Phys Chem Chem Phys. https://doi.org/10.1039/C7CP02741A

    Article  PubMed  Google Scholar 

  44. Laguna OH, Pérez A, Centeno MA, Odriozola JA (2015) Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Appl Catal B Environ 176–177:385–395. https://doi.org/10.1016/j.apcatb.2015.04.019

    Article  CAS  Google Scholar 

  45. Apostolov AT, Apostolova IN, Wesselinowa JM (2018) A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles. Phys E Low-Dimensional Syst Nanostructures 99:202–207. https://doi.org/10.1016/j.physe.2018.02.007

    Article  CAS  Google Scholar 

  46. Bošković SB, Djurović DR, Zec SP, Matović BZ, Zinkevich M, Aldinger F (2008) Doped and Co-doped CeO2: preparation and properties. Ceram Int 34:2001–2006. https://doi.org/10.1016/j.ceramint.2007.07.036

    Article  CAS  Google Scholar 

  47. Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosasuperba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 49:408–415. https://doi.org/10.1016/j.msec.2015.01.042

    Article  CAS  Google Scholar 

  48. Sharma JK, Srivastava P, Ameen S, Akhtar MS, Sengupta SK, Singh G (2017) Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Mater Res Bull 91:98–107. https://doi.org/10.1016/j.materresbull.2017.03.034

    Article  CAS  Google Scholar 

  49. Sangsefidi FS, Nejati M, Verdi J, Salavati-Niasari M (2017) Green synthesis and characterization of cerium oxide nanostructures in the presence carbohydrate sugars as a capping agent and investigation of their cytotoxicity on the mesenchymal stem cell. J Clean Prod 156:741–749. https://doi.org/10.1016/j.jclepro.2017.04.114

    Article  CAS  Google Scholar 

  50. Khare A, Choudhary RJ, Bapna K, Phase DM, Sanyal SP (2010) Resonance photoemission studies of (111) oriented CeO2 thin film grown on Si (100) substrate by pulsed laser deposition. J Appl Phys 108:103712. https://doi.org/10.1063/1.3514571

    Article  CAS  Google Scholar 

  51. Pradhan GK, Parida K (2011) Fabrication of iron-cerium mixed oxide: an efficient photocatalyst for dye degradation. Int J Eng Sci Technol 2:53–65. https://doi.org/10.4314/ijest.v2i8.63780

    Article  Google Scholar 

  52. Channei D, Inceesungvorn B, Wetchakun N, Phanichphant S (2013) Kinetics study of photocatalytic activity of flame-made unloaded and Fe-loaded CeO2 nanoparticles. Int J Photoenergy 2013:1–9. https://doi.org/10.1155/2013/484831

    Article  CAS  Google Scholar 

  53. Guerra-Que Z, Torres-Torres G, Pérez-Vidal H, Cuauhtémoc-López I, Monteros AE, Beltramini JN, Frías-Márquez DM (2017) Silver nanoparticles supported on zirconia-ceria for the catalytic wet air oxidation of methyl tert-butyl ether. RSC Adv. https://doi.org/10.1039/C6RA25684H

    Article  Google Scholar 

  54. Ansari SA, Cho MH (2016) Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications. Sci Rep 6:1–10. https://doi.org/10.1038/srep25405

    Article  CAS  Google Scholar 

  55. Chen J, Shen S, Wu P, Guo L (2015) Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chem 17:509–517. https://doi.org/10.1039/c4gc01683a

    Article  Google Scholar 

  56. Chen Z, Ding Y, Fang N, Liu C (2018) Fabrication and photocatalytic activities of dark brown CeO2 with a crystalline-core/disordered-shell heterostructure. Mater Res Express 5:65905. https://doi.org/10.1088/2053-1591/aac801

    Article  CAS  Google Scholar 

  57. Singh M, Goyal M, Devlal K (2018) Size and shape effects on the band gap of semiconductor compound nanomaterials. J Taibah Univ Sci 12:470–475. https://doi.org/10.1080/16583655.2018.1473946

    Article  Google Scholar 

  58. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960. https://doi.org/10.1021/nl034312m

    Article  CAS  Google Scholar 

  59. Malleshappa J, Nagabhushana H, Prasad BD, Sharma SC, Vidya YS, Anantharaju KS (2016) Structural, photoluminescence and thermoluminescence properties of CeO2 nanoparticles. Optik (Stuttg) 127:855–861. https://doi.org/10.1016/j.ijleo.2015.10.114

    Article  CAS  Google Scholar 

  60. Khan MM, Ansari SA, Pradhan D, Han DH, Lee J, Cho MH (2014) Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res 53:9754–9763. https://doi.org/10.1021/ie500986n

    Article  CAS  Google Scholar 

  61. Ansari SA, Khan MM, Ansari MO, Kalathil S, Lee J, Cho MH (2014) Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv 4:16782–16791. https://doi.org/10.1039/c4ra00861h

    Article  CAS  Google Scholar 

  62. Ansari SA, Khan MM, Ansari MO, Lee J, Cho MH (2013) Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. J Phys Chem C 117:27023–27030. https://doi.org/10.1021/jp410063p

    Article  CAS  Google Scholar 

  63. Khan MM, Ansari SA, Ansari MO, Min BK, Lee J, Cho MH (2014) Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. J Phys Chem C 118:9477–9484. https://doi.org/10.1021/jp500933t

    Article  CAS  Google Scholar 

  64. Khan F, Lee J-W, Pham DTN, Khan MM, Park S-K, Shin I-S, Kim Y-M (2020) Antibiofilm action of ZnO, SnO2 and CeO2 nanoparticles towards Gram-positive biofilm forming pathogenic bacteria. Recent Pat Nanotechnol 14(3):239–249. https://doi.org/10.2174/1872210514666200313121953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the FIC block grant UBD/RSCH/1.4/FICBF(b)/2018/012 received from Universiti Brunei Darussalam, Brunei Darussalam. The author would also like to acknowledge Centre of Advanced Material and Energy Sciences for helping with XRD analysis.

Author information

Authors and Affiliations

Authors

Contributions

SNN: methodology, investigation, data curation, writing—original draft. FK: methodology, investigation, data curation, writing—original draft. MHH: supervision, writing—review and editing. ALT: supervision, writing—review and editing. YM-K: resources, formal analysis. MMK: supervision, conceptualization, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidi, S.N., Khan, F., Harunsani, M.H. et al. Effect of Zr doping on photoantioxidant and antibiofilm properties of CeO2 NPs fabricated using aqueous leaf extract of Pometia pinnata. Bioprocess Biosyst Eng 45, 279–295 (2022). https://doi.org/10.1007/s00449-021-02656-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02656-x

Keywords

Navigation