Skip to main content
Log in

Rooted Maximum Agreement Supertrees

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a set $\T$ of rooted, unordered trees, where each $T_i \in \T$ is distinctly leaf-labeled by a set $\Lambda(T_i)$ and where the sets $\Lambda(T_i)$ may overlap, the maximum agreement supertree problem~(MASP) is to construct a distinctly leaf-labeled tree $Q$ with leaf set $\Lambda(Q) \subseteq $\cup$_{T_i \in \T} \Lambda(T_i)$ such that $|\Lambda(Q)|$ is maximized and for each $T_i \in \T$, the topological restriction of $T_i$ to $\Lambda(Q)$ is isomorphic to the topological restriction of $Q$ to $\Lambda(T_i)$. Let $n = \left| $\cup$_{T_i \in \T} \Lambda(T_i)\right|$, $k = |\T|$, and $D = \max_{T_i \in \T}\{\deg(T_i)\}$. We first show that MASP with $k = 2$ can be solved in $O(\sqrt{D} n \log (2n/D))$ time, which is $O(n \log n)$ when $D = O(1)$ and $O(n^{1.5})$ when $D$ is unrestricted. We then present an algorithm for MASP with $D = 2$ whose running time is polynomial if $k = O(1)$. On the other hand, we prove that MASP is NP-hard for any fixed $k \geq 3$ when $D$ is unrestricted, and also NP-hard for any fixed $D \geq 2$ when $k$ is unrestricted even if each input tree is required to contain at most three leaves. Finally, we describe a polynomial-time $(n/\!\log n)$-approximation algorithm for MASP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesper Jansson, Joseph H.-K. Ng, Kunihiko Sadakane or Wing-Kin Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansson, J., Ng, JK., Sadakane, K. et al. Rooted Maximum Agreement Supertrees. Algorithmica 43, 293–307 (2005). https://doi.org/10.1007/s00453-004-1147-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-004-1147-5

Keywords

Navigation