Skip to main content
Log in

A Spectral Algorithm for Latent Dirichlet Allocation

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Topic modeling is a generalization of clustering that posits that observations (words in a document) are generated by multiple latent factors (topics), as opposed to just one. The increased representational power comes at the cost of a more challenging unsupervised learning problem for estimating the topic-word distributions when only words are observed, and the topics are hidden. This work provides a simple and efficient learning procedure that is guaranteed to recover the parameters for a wide class of multi-view models and topic models, including latent Dirichlet allocation (LDA). For LDA, the procedure correctly recovers both the topic-word distributions and the parameters of the Dirichlet prior over the topic mixtures, using only trigram statistics (i.e., third order moments, which may be estimated with documents containing just three words). The method is based on an efficiently computable orthogonal tensor decomposition of low-order moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The technique of [23] is actually attributed to Robert Jennrich.

  2. By additive noise, we mean a model in which \({\varvec{x}}_v = {\varvec{O}}^{(v)}{\varvec{h}}+ {\varvec{\eta }}_v\) where \({\varvec{\eta }}_v\) is a zero-mean random vector independent of \({\varvec{h}}\).

References

  1. Achlioptas, D., McSherry, F.: On spectral learning of mixtures of distributions. Eighteenth Annual Conference on Learning Theory, pp. 458–469. Springer, Bertinoro (2005)

    Google Scholar 

  2. Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S.M., Song, L., Zhang, T.: Spectral methods for learning multivariate latent tree structure. Adv. Neural Inf. Process. Syst. 24, 2025–2033 (2011)

    Google Scholar 

  3. Anandkumar, A., Foster, D.P., Hsu, D., Kakade, S.M., Liu, Y.K.: A spectral algorithm for latent Dirichlet allocation. Adv. Neural Inf. Process. Syst. 25, 917–925 (2012)

    Google Scholar 

  4. Anandkumar, A., Foster, D.P., Hsu, D., Kakade, S.M., Liu, Y.K.: Two SVDs suffice: spectral decompositions for probabilistic topic models and latent Dirichlet allocation (2012). arXiv:1204.6703v1

  5. Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. (2014). To appear.

  6. Anandkumar, A., Hsu, D., Kakade, S.M.: A method of moments for mixture models and hidden Markov models. In: Twenty-Fifth Annual Conference on Learning Theory, vol. 23, pp. 33.1-33.34 (2012)

  7. Ando, R., Zhang, T.: Two-view feature generation model for semi-supervised learning. In: Twenty-Fourth International Conference on Machine Learning, pp. 25–32 (2007)

  8. Arora, S., Ge, R., Moitra, A.: Learning topic models – going beyond SVD. In: Fifty-Third IEEE Annual Symposium on Foundations of Computer Science, pp. 1–10 (2012)

  9. Arora, S., Ge, R., Moitra, A., Sachdeva, S.: Provable ICA with unknown Gaussian noise, with implications for Gaussian mixtures and autoencoders. Adv. Neural Inf. Process. Syst. 25, 2375–2383 (2012)

    Google Scholar 

  10. Arora, S., Kannan, R.: Learning mixtures of separated nonspherical Gaussians. Ann. Appl. Probab. 15(1A), 69–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Belkin, M., Sinha, K.: Polynomial learning of distribution families. In: Fifty-First Annual IEEE Symposium on Foundations of Computer Science, pp. 103–112 (2010)

  12. Blei, D.M., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  13. Canny, J.: GaP: A factor model for discrete data. In: Proceedings of the Twenty-Seventh Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 122–129 (2004)

  14. Cardoso, J.F., Comon, P.: Independent component analysis, a survey of some algebraic methods. In: IEEE International Symposium on Circuits and Systems, pp. 93–96 (1996)

  15. Chang, J.T.: Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. Math. Biosci. 137, 51–73 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: Twenty-Sixth Annual International Conference on Machine Learning, pp. 129–136 (2009)

  17. Chaudhuri, K., Rao, S.: Learning mixtures of product distributions using correlations and independence. In: Twenty-First Annual Conference on Learning Theory, pp. 9–20 (2008)

  18. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Waltham (2010)

    Google Scholar 

  19. Dasgupta, S.: Learning mixutres of Gaussians. In: Fortieth Annual IEEE Symposium on Foundations of Computer Science, pp. 634–644 (1999)

  20. Dasgupta, S., Schulman, L.: A probabilistic analysis of EM for mixtures of separated, spherical Gaussians. J. Mach. Learn. Res. 8, 203–226 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Frieze, A.M., Jerrum, M., Kannan, R.: Learning linear transformations. In: Thirty-Seventh Annual Symposium on Foundations of Computer Science, pp. 359–368 (1996)

  22. Griffiths, T.: Gibbs sampling in the generative model of latent Dirichlet allocation. Tech. rep., Stanford University (2002)

  23. Harshman, R.: Foundations of the PARAFAC procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis. Tech. rep., UCLA Working Papers in Phonetics (1970)

  24. Hitchcock, F.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)

    MATH  Google Scholar 

  25. Hitchcock, F.: Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7, 39–79 (1927)

    MATH  Google Scholar 

  26. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the Twenty-Second Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57 (1999)

  27. Hotelling, H.: The most predictable criterion. J. Educ. Psychol. 26(2), 139–142 (1935)

    Article  Google Scholar 

  28. Hsu, D., Kakade, S.M.: Learning mixtures of spherical Gaussians: moment methods and spectral decompositions. In: Fourth Innovations in Theoretical Computer Science (2013)

  29. Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden Markov models. J. Comput. Syst. Sci. 78(5), 1460–1480 (2012). http://www.sciencedirect.com/science/article/pii/S0022000012000244

  30. Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  31. Kakade, S.M., Foster, D.P.: Multi-view regression via canonical correlation analysis. In: Twentieth Annual Conference on Learning Theory, pp. 82–96 (2007)

  32. Kalai, A.T., Moitra, A., Valiant, G.: Efficiently learning mixtures of two Gaussians. In: Forty-second ACM Symposium on Theory of Computing, pp. 553–562 (2010)

  33. Kannan, R., Salmasian, H., Vempala, S.: The spectral method for general mixture models. SIAM J. Comput. 38(3), 1141–1156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Its Appl. 18(2), 95–138 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  37. Leurgans, S., Ross, R., Abel, R.: A decomposition for three-way arrays. SIAM J. Matrix Anal. Appl. 14(4), 1064–1083 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  38. Moitra, A., Valiant, G.: Settling the polynomial learnability of mixtures of Gaussians. In: Fifty-First Annual IEEE Symposium on Foundations of Computer Science, pp. 93–102 (2010)

  39. Mossel, E., Roch, S.: Learning nonsingular phylogenies and hidden Markov models. Ann. Appl. Probab. 16(2), 583–614 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. J. Cryptol. 22(2), 139–160 (2009)

  41. Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent semantic indexing: a probabilistic analysis. J. Comput. Syst. Sci. 61(2), 217–235 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pearson, K.: Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 185, 71–110 (1894)

    Article  MATH  Google Scholar 

  43. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26(2), 195–239 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  45. Vempala, S., Wang, G.: A spectral algorithm for learning mixtures models. J. Comput. Syst. Sci. 68(4), 841–860 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zou, J., Hsu, D., Parkes, D., Adams, R.: Contrastive learning using spectral methods. Adv. Neural Inf. Process. Syst. 26, 2238–2246 (2013)

    Google Scholar 

Download references

Acknowledgments

We thank Kamalika Chaudhuri, Adam Kalai, Percy Liang, Chris Meek, David Sontag, and Tong Zhang for valuable insights. We also thank Rong Ge for sharing preliminary results (in [8]) and the anonymous reviewers for their comments, suggestions, and pointers to references. Part of this work was completed while DH was a postdoctoral researcher at Microsoft Research New England, and while DPF, YKL, and AA were visiting the same lab. AA is supported in part by Microsoft Faculty Fellowship, NSF Career award CCF-1254106, NSF Award CCF-1219234, NSF BIGDATA IIS-1251267 and ARO YIP Award W911NF-13-1-0084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hsu.

Additional information

Preliminary versions of this article appeared as [3, 4].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandkumar, A., Foster, D.P., Hsu, D. et al. A Spectral Algorithm for Latent Dirichlet Allocation. Algorithmica 72, 193–214 (2015). https://doi.org/10.1007/s00453-014-9909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9909-1

Keywords

Navigation