Skip to main content
Log in

Local Computation Algorithms for Graphs of Non-constant Degrees

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the model of local computation algorithms (LCAs), we aim to compute the queried part of the output by examining only a small (sublinear) portion of the input. Many recently developed LCAs on graph problems achieve time and space complexities with very low dependence on n, the number of vertices. Nonetheless, these complexities are generally at least exponential in d, the upper bound on the degree of the input graph. Instead, we consider the case where parameter d can be moderately dependent on n, and aim for complexities with subexponential dependence on d, while maintaining polylogarithmic dependence on n. We present:

  • a randomized LCA for computing maximal independent sets whose time and space complexities are quasi-polynomial in d and polylogarithmic in n;

  • for constant \(\varepsilon > 0\), a randomized LCA that provides a \((1-\varepsilon )\)-approximation to maximum matching with high probability, whose time and space complexities are polynomial in d and polylogarithmic in n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some recent work on LCAs uses the alternative term “probe” to refer to queries that \(\mathscr {A}\) makes to \(\mathscr {O}^G\), in order to distinguish them from queries that we ask \(\mathscr {A}\) to answer; the corresponding complexity is called the probe complexity. We choose not to adopt this notation since both types of queries will often be indistinguishable when we construct oracles for intermediate graphs during the execution of our algorithms. It will also contradict with the term “query tree,” which is unanimously used in other work on this method.

  2. Applying a similar reduction on the unmodified version gives an LCA with complexities \(2^{O(\log ^3 d + \log d \log \log n)}\).

References

  1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data reconstruction. Algorithmica 51(2), 160–182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N.: A parallel algorithmic version of the local lemma. Random Struct. Algorithms 2(4), 367–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1132–1139. SIAM (2012)

  5. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pp. 475–486. IEEE (2006)

  6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pp. 321–330. IEEE (2012)

  7. Beck, J.: An algorithmic approach to the Lovász local lemma. I. Random Struct. Algorithms 2(4), 343–365 (1991)

    Article  MATH  Google Scholar 

  8. Borgs, C., Brautbar, M., Chayes, J.T., Khanna, S., Lucier, B.: The power of local information in social networks. In: Goldberg, P.W. (ed.) Internet and Network Economics, Proceedings of the 8th International Workshop, WINE 2012, Liverpool, UK, December 10–12, 2012. Lecture Notes in Computer Science, vol. 7695, pp. 406–419. Springer (2012)

  9. Brakerski, Z.: Local property restoring. Unpublished manuscript (2008)

  10. Campagna, A., Guo, A., Rubinfeld, R.: Local reconstructors and tolerant testers for connectivity and diameter. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Proceedings of the 16th International Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21–23, 2013. Lecture Notes in Computer Science, vol. 8096, pp. 411–424. Springer, Berlin (2013)

  11. Chazelle, B., Seshadhri, C.: Online geometric reconstruction. J. ACM (JACM) 58(4), 14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chung, K.M., Pettie, S., Su, H.H.: Distributed algorithms for the lovász local lemma and graph coloring. In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, pp. 134–143. ACM (2014)

  13. Dutta, A., Levi, R., Ron, D., Rubinfeld, R.: A simple online competitive adaptation of lempel-ziv compression with efficient random access support. In: Data Compression Conference (DCC), 2013, pp. 113–122. IEEE (2013)

  14. Even, G., Medina, M., Ron, D.: Deterministic stateless centralized local algorithms for bounded degree graphs. In: Schulz, A.S., Wagner, D. (eds.) Algorithms - ESA 2014, Proceedings of the 22th Annual European Symposium, Wroclaw, Poland, September 8–10, 2014. Lecture Notes in Computer Science, vol. 8737, pp. 394–405. Springer, Berlin (2014)

  15. Even, G., Medina, M., Ron, D.: Distributed maximum matching in bounded degree graphs. arXiv preprint arXiv:1407.7882 (2014)

  16. Gamarnik, D., Sudan, M.: Limits of local algorithms over sparse random graphs. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 369–376. ACM (2014)

  17. Hassidim, A., Mansour, Y., Vardi, S.: Local computation mechanism design. In: Proceedings of the Fifteenth ACM Conference on Economics and Computation, pp. 601–616. ACM (2014)

  18. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal matching. Inf. Process. Lett. 22(2), 77–80 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jha, M., Raskhodnikova, S.: Testing and reconstruction of lipschitz functions with applications to data privacy. SIAM J. Comput. 42(2), 700–731 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kale, S., Peres, Y., Seshadhri, C.: Noise tolerance of expanders and sublinear expander reconstruction. In: Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pp. 719–728. IEEE (2008)

  22. Kelsen, P.: Fast parallel matching in expander graphs. In: Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 293–299. ACM (1993)

  23. Levi, R., Ron, D., Rubinfeld, R.: Local algorithms for sparse spanning graphs. In: Jansen, K., Rolim, J.D.P., Devanur, N.R., Moore, C. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4–6, 2014, Barcelona, Spain. LIPIcs, vol. 28, p. 826. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

  24. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lotker, Z., Patt-Shamir, B., Rosén, A.: Distributed approximate matching. SIAM J. Comput. 39(2), 445–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A.M., Wattenhofer, R. (eds.) Automata, Languages, and Programming, Proceedings of the 39th International Colloquium, ICALP 2012, Warwick, UK, July 9–13, 2012. Lecture Notes in Computer Science, vol. 7391, pp. 653–664. Springer, Berlin (2012)

  28. Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum matching. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 260–273. Springer, Berlin (2013)

  29. Marko, S., Ron, D.: Approximating the distance to properties in bounded-degree and general sparse graphs. ACM Trans. Algorithms (TALG) 5(2), 22 (2009)

    MathSciNet  Google Scholar 

  30. Muthukrishnan, S., Strauss, M., Zheng, X.: Workload-optimal histograms on streams. In: Brodal, G.S., Leonardi, S. (eds.) Algorithms - ESA 2005, Proceedings of the 13th Annual European Symposium, Palma de Mallorca, Spain, October 3–6, 2005. Lecture Notes in Computer Science, vol. 3669, pp. 734–745. Springer, Berlin (2005)

  31. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pp. 327–336. IEEE (2008)

  32. Onak, K., Ron, D., Rosen, M., Rubinfeld, R.: A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1123–1131. SIAM (2012)

  33. Orecchia, L., Zhu, Z.A.: Flow-based algorithms for local graph clustering. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1267–1286. SIAM (2014)

  34. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1), 183–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peleg, D.: Distributed computing: a locality-sensitive approach. Siam, Philadelphia. Technical report, ISBN 0-89871-464-8 (2000)

  36. Reingold, O., Vardi, S.: New techniques and tighter bounds for local computation algorithms. arXiv preprint arXiv:1404.5398 (2014)

  37. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: Innovations in Computer Science—ICS 2010, Tsinghua University, Beijing, China, January 7–9, 2011. Proceedings, pp. 223–238 (2011). http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/36.html

  38. Saks, M., Seshadhri, C.: Local monotonicity reconstruction. SIAM J. Comput. 39(7), 2897–2926 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Spielman, D.A., Teng, S.H.: A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning. SIAM J. Comput. 42(1), 1–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the xor lemma. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 537–546. ACM (1999)

  41. Yoshida, Y., Yamamoto, M., Ito, H.: Improved constant-time approximation algorithms for maximum matchings and other optimization problems. SIAM J. Comput. 41(4), 1074–1093 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Levi was supported by National Science Foundation (NSF) Grants CCF-1217423 and CCF-1065125, and Israel Science Foundation (ISF) Grants 246/08 and 1536/14. Rubinfeld was supported by NSF Grants CCF-1217423, CCF-1065125, CCF-1420692, and ISF grant 1536/14. Yodpinyanee was supported by NSF Grants CCF-1217423, CCF-1065125, CCF-1420692, and the Development and Promotion of Science and Technology Talented Project scholarship, Royal Thai Government. We thank Dana Ron for her valuable contribution to this paper. We thank anonymous reviewers for their insightful comments on the preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reut Levi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levi, R., Rubinfeld, R. & Yodpinyanee, A. Local Computation Algorithms for Graphs of Non-constant Degrees. Algorithmica 77, 971–994 (2017). https://doi.org/10.1007/s00453-016-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0126-y

Keywords

Navigation