1 Introduction and Main Results

Let \(\mathbb{S }^1:=\{z=x+{\text{ i }}y \mid x,y \in \mathbb{R },\,\,x^2+y^2 =1\}\) denote the unit circle in the complex plane \(\mathbb{C }\). For \(z,w\in \mathbb{S }^1\), we denote by \(d(z,w)\) the geodesic (shortest arclength) distance between z and w. Let \(f:[0,\pi ]\rightarrow [0,\infty ]\) be non-increasing and convex on \((0,\pi ]\) with \(f(0)=\lim _{\theta \rightarrow 0^+}f(\theta )\). It then follows that f is a continuous extended real-valued function on \([0,\pi ]\).

For a list of n points (not necessarily distinct) \(\omega _n=(z_1 ,\ldots , z_n)\in (\mathbb{S }^1)^n\), we consider the f-potential of \(\omega _n\),

$$\begin{aligned} U^f(\omega _n;z):=\sum _{k=1}^n f(d(z,z_k)) \quad (z\in \mathbb{S }^1), \end{aligned}$$
(1)

and the f-polarization of \(\omega _n\),

$$\begin{aligned} M^f(\omega _n;\mathbb{S }^1):=\min _{z\in \mathbb{S }^1}U^f(\omega _n;z). \end{aligned}$$
(2)

In this note, we are chiefly concerned with the n-point f-polarization of \(\mathbb{S }^1\) (also called the nth f-Chebyshev constant of \(\mathbb{S }^1\)),

$$\begin{aligned} M^f_n(\mathbb{S }^1):=\sup _{\omega _n\in (\mathbb{S }^1)^n}M^f(\omega _n;\mathbb{S }^1), \end{aligned}$$
(3)

which has been the subject of several recent papers (e.g., [1, 2, 5, 6]).

In the case (relating to Euclidean distance) when

$$\begin{aligned} f(\theta )=f_s(\theta ):= |{\text{ e }}^{{\text{ i }}\theta }-1|^{-s}=(2 \sin |\theta /2|)^{-s},\quad s>0, \end{aligned}$$
(4)

we abbreviate the notation for the above quantities by writing

$$\begin{aligned} U^s(\omega _n;z)&:= \sum _{k=1}^n f_s(d(z,z_k))=\sum _{k=1}^n \frac{1}{|z-z_k|^s}, \nonumber \\ M^s(\omega _n;\mathbb{S }^1)&:= \min _{z\in \mathbb{S }^1} \sum _{k=1}^n \frac{1}{|z-z_k|^s},\\ M^s_n(\mathbb{S }^1)&:= \sup _{\omega _n \in (\mathbb{S }^1)^n} M^s(\omega _n;\mathbb{S }^1). \nonumber \end{aligned}$$
(5)

The main result of this note is the following theorem conjectured by Ambrus et al. [2]. Its proof is given in the next section.

Theorem 1

Let \(f:[0,\pi ]\rightarrow [0,\infty ]\) be non-increasing and convex on \((0,\pi ]\) with \(f(0)=\lim _{\theta \rightarrow 0^+}f(\theta )\). If \(\omega _n\) is any configuration of n distinct equally spaced points on \(\mathbb{S }^1\), then \(M^f(\omega _n;\mathbb{S }^1)=M^f_n(\mathbb{S }^1)\). Moreover, if the convexity condition is replaced by strict convexity, then such configurations are the only ones that achieve this equality.

Applying this theorem to the case of \(f_s\) given in (4) we immediately obtain the following.

Corollary 2

Let \(s>0\) and \(\omega _n^*:=\{\mathrm{{e}}^{\mathrm{{i}}2\pi k/n}\,: k=1,2,\ldots ,n\} \). If \((z_1,\ldots , z_n)\in (\mathbb{S }^1)^n\), then

$$\begin{aligned} \min _{z\in \mathbb{S }^1}\sum _{k=1}^n \frac{1}{|z-z_k|^s}\le M^s(\omega _n^*;\mathbb{S }^1)= M^s_n(\mathbb{S }^1), \end{aligned}$$
(6)

with equality if and only if \((z_1,\ldots , z_n)\) consists of distinct equally spaced points.

The following representation of \(M^s(\omega _n^*;\mathbb{S }^1)\) in terms of Riesz s-energy was observed in [2]:

$$\begin{aligned} M^s(\omega _n^*;\mathbb{S }^1) = \frac{\mathcal{E }_s(\mathbb{S }^1;2n)}{2n} - \frac{\mathcal{E }_s(\mathbb{S }^1;n)}{n}, \end{aligned}$$

where

$$\begin{aligned} \mathcal{E }_s(\mathbb{S }^1;n):=\inf _{\omega _n\in (\mathbb{S }^1)^n} \sum _{j=1}^n\sum _{\begin{array}{c} k=1\\ k\ne j \end{array}}^n\frac{1}{|z_j-z_k|^s}. \end{aligned}$$

Thus, applying the asymptotic formulas for \(\mathcal{E }_s(\mathbb{S }^1;n)\) given in [3], we obtain the dominant term of \( M^s_n(\mathbb{S }^1)\) as \(n\rightarrow \infty \):

$$\begin{aligned} M^s_n(\mathbb{S }^1) \sim \left\{ \begin{array}{ll} \displaystyle {\frac{2 \zeta (s)}{(2\pi )^s} \, (2^s - 1)n^s}, &{} s> 1\,, \\ \displaystyle { ({1}/{\pi }) \, n\log n}, &{} s = 1\,, \\ \displaystyle {\frac{2^{-s}}{\sqrt{\pi }} \, \frac{\Gamma \big ( \frac{1-s}{2}\big )}{\Gamma \big (1-\frac{s}{2} \big )}}\, n, &{} s \in [0,1), \end{array}\right. \end{aligned}$$

where \(\zeta (s)\) denotes the classical Riemann zeta function and \(a_n \sim b_n\) means that \(\lim _{n \rightarrow \infty }{a_n/b_n} = 1\). These asymptotics, but for \(M^s (\omega _n^*;\mathbb{S }^1)\), were stated in [2]Footnote 1.

For s an even integer, say \(s=2m\), the precise value of \(M^{2m}_n(\mathbb{S }^1)=M^{2m}(\omega _n^*;\mathbb{S }^1)\) can be expressed in finite terms, as can be seen from formula (1.20) in [3].

Corollary 3

We have

$$\begin{aligned} M_n^{2m}(\mathbb{S }^1)= \frac{2}{(2\pi )^{2m}} \sum _{k=1}^m n^{2k}\zeta (2k)\alpha _{m-k}(2m)(2^{2k}-1),\quad m \in \mathbb{N }, \end{aligned}$$

where \(\alpha _j(s)\) is defined via the power series for \(\mathrm{sinc\,} z = (\sin \pi z)/(\pi z)\):

$$\begin{aligned} (\mathrm{sinc\,} z)^{-s} = \sum _{j=0}^\infty \alpha _j(s) z^{2j}\,, \quad \alpha _0(s)=1. \end{aligned}$$

In particular,

$$\begin{aligned} M^2_n(\mathbb{S }^1)&= \frac{2}{(2\pi )^2}n^2\zeta (2)=\frac{n^2}{4},\\ M_n^4(\mathbb{S }^1)&= \frac{2}{(2\pi )^4}[n^2\zeta (2)\alpha _1(4)(2^2-1)+n^4\zeta (4)(2^4-1)]= \frac{n^2}{24}+\frac{n^4}{48} ,\\ M_n^6(\mathbb{S }^1)&= \frac{2}{(2\pi )^6}[n^2\zeta (2)\alpha _2(6)(2^2-1)+n^4\zeta (4)\alpha _1(6)(2^4-1)+n^6\zeta (6)(2^6-1)]\\&= \frac{n^2}{120} + \frac{n^4}{192} + \frac{n^6}{480}, \end{aligned}$$

The case \(s=2\) of the above corollary was first proved in [1, 2] and the case \(s=4\) was first proved in [5]. We remark that an alternative formula for \(\alpha _j(s)\) is

$$\begin{aligned} \alpha _j(s) = \frac{(-1)^j B_{2j}^{(s)}(s/2)}{(2j)!}(2\pi )^{2j}, \quad j = 0,1,2,\dots , \end{aligned}$$

where \(B_j^{(\alpha )}(x)\) denotes the generalized Bernoulli polynomial. Asymptotic formulas for \(M^f_n(\mathbb{S }^1)\) for certain other functions f can be obtained from the asymptotic formulas given in [4].

As other consequences of Theorem 1, we immediately deduce that equally spaced points are optimal for the following problems:

$$\begin{aligned} \min _{\omega _n\in (\mathbb{S }^1)^n} \max _{z\in \mathbb{S }^1} \sum _{k=1}^n {|z-z_k|^\alpha }\quad (0<\alpha \le 1), \end{aligned}$$
(7)

and

$$\begin{aligned} \max _{\omega _n\in (\mathbb{S }^1)^n} \min _{z\in \mathbb{S }^1} \sum _{k=1}^n \log \frac{1}{|z-z_k|}, \end{aligned}$$
(8)

with the solution to (8) being well-known. Furthermore, various generalizations of the polarization problem for Riesz potentials for configurations on \(\mathbb{S }^1\) are worthy of consideration, such as minimizing the potential on circles concentric with \(\mathbb{S }^1\).

2 Proof of Theorem 1

For distinct points \(z_1,z_2\in \mathbb{S }^1\), we let \(\widehat{z_1z_2}\) denote the closed subarc of \(\mathbb{S }^1\) from \(z_1\) to \(z_2\) traversed in the counterclockwise direction. We further let \(\gamma (\widehat{z_1z_2})\) denote the length of \(\widehat{z_1z_2}\) (thus, \(\gamma (\widehat{z_1z_2})\) equals either \(d(z_1,z_2)\) or \(2\pi -d(z_1,z_2)\)). Observe that the points \(z_1\) and \(z_2\) partition \(\mathbb{S }^1\) into two subarcs: \(\widehat{z_1z_2}\) and \(\widehat{z_2z_1}\). The following lemma (see proof of Lemma 1 in [2]) is a simple consequence of the convexity and monotonicity of the function f and is used to show that any n-point configuration \(\omega _n\subset \mathbb{S }^1\) such that \(M^f(\omega _n; \mathbb{S }^1)=M_n^f(\mathbb{S }^1)\) must have the property that any local minimum of \(U^f(\omega _n; \cdot )\) is a global minimum of this function (Fig. 1).

Fig. 1
figure 1

The points \(z_1, z_2, \rho _{-\varepsilon }(z_1), \rho _{\varepsilon }(z_2)\) in Lemma 4. The potential increases at every point in the subarc \(\widehat{\rho _\varepsilon (z_2) \rho _{-\varepsilon }(z_1)}\) when \((z_1, z_2) \rightarrow (\rho _{-\varepsilon }(z_1), \rho _{\varepsilon }(z_2))\); see (9).

For \(\phi \in \mathbb{R }\) and \(z\in \mathbb{S }^1\), we let \(\rho _\phi (z):=e^{i\phi }z\) denote the counterclockwise rotation of z by the angle \(\phi \).

Lemma 4

([2]) Let \(z_1, z_2\in \mathbb{S }^1\) and \(0<\varepsilon <\gamma (\widehat{z_2z_1})/2\). Then with f as in Theorem 1,

$$\begin{aligned} U^f((z_1,z_2);z)\le U^f((\rho _{-\varepsilon }(z_1),\rho _\varepsilon (z_2));z) \end{aligned}$$
(9)

for z in the subarc \(\widehat{\rho _\varepsilon (z_2) \rho _{-\varepsilon }(z_1)},\) while the reverse inequality holds for z in the subarc \(\widehat{z_1 z_2}\). If f is strictly convex on \((0,\pi ]\), then these inequalities are strict. If \(z_1=z_2\), then we set \(\widehat{z_1 z_2}=\{z_1\}\) and \(\widehat{z_2 z_1}=\mathbb{S }^1\).

We now assume that \(\omega _n=(z_1 ,\ldots , z_n)\) is ordered in a counterclockwise manner and also that the indexing is extended periodically so that \(z_{k+n}=z_k\) for \(k\in \mathbb{Z }\). For \(1\le k\le n\) and \(\Delta \in \mathbb{R }\), we define \(\tau _{k,\Delta }:(\mathbb{S }^1)^n\rightarrow (\mathbb{S }^1)^n\) by

$$\begin{aligned} \tau _{k,\Delta }(z_1,\ldots , z_k,z_{k+1},\ldots , z_n):=(z_1,\ldots , \rho _{-\Delta }(z_k),\rho _{\Delta }(z_{k+1}),\ldots , z_n). \end{aligned}$$

If \(z_{k-1}\ne z_k\) and \(z_{k+1}\ne z_{k+2}\), then \(\tau _{k,\Delta }(\omega _n)\) retains the ordering of \(\omega _n\) for \(\Delta \) positive and sufficiently small. Given \(\varvec{\Delta }:=(\Delta _1,\ldots , \Delta _n)^T\in \mathbb{R }^n\), let \(\tau _{\varvec{\Delta }}\!:=\!\tau _{n,\Delta _n}\circ \cdots \circ \tau _{2,\Delta _2}\circ \tau _{1,\Delta _1}\) and \(\omega _n^{\prime }\!:=\!\tau _{\varvec{\Delta }} (\omega _n).\) Letting \(\alpha _k\!:=\!\gamma (\widehat{z_k z_{k+1}})\) and \(\alpha _k^{\prime }:=\gamma (\widehat{z_k^{\prime } z_{k+1}^{\prime }})\) for \(k=1,\ldots , n\), we obtain the system of n linear equations:

$$\begin{aligned} \alpha ^{\prime }_k=\alpha _k-\Delta _{k-1}+2\Delta _k-\Delta _{k+1} \quad (1\le k\le n), \end{aligned}$$
(10)

which is satisfied as long as \(\sum _{k=1}^n\alpha _k^{\prime }=2\pi \) or, equivalently, if \(\omega _n^{\prime }\) is ordered counterclockwise. Let

$$\begin{aligned} \text{ sep }(\omega _n):=\min _{1\le \ell \le n} \alpha _\ell . \end{aligned}$$

Then (10) holds if

$$\begin{aligned} \max _{1\le k\le n}|\Delta _k|\le (1/4)\text{ sep }(\omega _n), \end{aligned}$$
(11)

in which case, the configurations

$$\begin{aligned} \omega _{n,\varvec{\Delta }}^{(\ell )}:=\tau _{n,\Delta _\ell }\circ \cdots \circ \tau _{2,\Delta _2}\circ \tau _{1,\Delta _1}(\omega _n) \quad (\ell =1,\ldots ,n) \end{aligned}$$
(12)

are all ordered counterclockwise. If the components of \(\varvec{\Delta }\) are nonnegative, then we may replace the ‘(1/4)’ in (11) with ‘(1/2)’.

Lemma 5

Suppose \(\omega _n=(z_1 ,\ldots , z_n)\) and \(\omega _n^{\prime }=(z^{\prime }_1 ,\ldots , z^{\prime }_n)\) are n-point configurations on \(\mathbb{S }^1\) ordered in a counterclockwise manner. Then there is a unique \(\varvec{\Delta }^*=(\Delta _1^*,\ldots , \Delta _n^*)\in \mathbb{R }^n\) so that

  1. (a)

    \(\Delta _k^*\ge 0, \quad k=1,\ldots , n\),

  2. (b)

    \(\Delta _{j }^*=0\)    for some \(j \in \{1,\ldots , n\}\), and

  3. (c)

    \(\tau _{\varvec{\Delta ^*}}(\omega _n)\) is a rotation of \(\omega _n^{\prime }\).

Proof

The system (10) can be expressed in the form

$$\begin{aligned} A\varvec{\Delta }=\varvec{\beta }, \end{aligned}$$
(13)

where

$$\begin{aligned} A:=\left( \begin{array}{cccccc} 2 &{}\quad -1&{}\quad 0 &{}\quad 0 &{}\quad \cdots &{} -1\\ -1 &{}\quad 2 &{}\quad -1&{}\quad 0&{}\quad \cdots &{}\quad 0 \\ \vdots &{}\quad &{} &{} &{} &{} \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad -1 &{}\quad 2 &{}\quad -1\\ -1 &{}\quad 0 &{}\quad \cdots &{}\quad 0&{}\quad -1 &{}2 \end{array} \right) ; \quad \varvec{\Delta }:=\left( \begin{array}{c} \Delta _1 \\ \Delta _2\\ \vdots \\ \\ \Delta _n \end{array} \right) , \quad \text{ and }\quad \varvec{\beta }:=\left( \begin{array}{cc} \alpha _1^{\prime }-\alpha _1\\ \alpha _2^{\prime }-\alpha _2\\ \vdots \\ \\ \alpha _n^{\prime }-\alpha _n \end{array} \right) . \end{aligned}$$

It is elementary to verify that \(\ker A=(\text{ range }A)^\perp = \text{ span } (\varvec{1})\), where \(\varvec{1}=(1,1,\ldots ,1)^T\). Since \(\varvec{\beta }^T\varvec{1}=\sum _{k=1}^n (\alpha _k^{\prime }-\alpha _k)=0\), the linear system (13) always has a solution \(\varvec{\Delta }\). Let \(j\in \{1, \ldots , n\}\) satisfy \(\Delta _{j}= \min _{1\le k\le n} \Delta _k \). Then subtracting \(\Delta _{j} \varvec{1}\) from \(\varvec{\Delta }\), we obtain the desired \(\varvec{\Delta }^*\). Since \(\ker A=\text{ span }\,\varvec{1}\), there is at most one solution of (13) satisfying properties (a) and (b), showing that \(\varvec{\Delta ^*}\) is unique.

Part (c) holds as a direct result of the fact that both \(\omega _n\) and \(\omega _n^{\prime }\) are ordered counterclockwise.

Lemma 6

Let \(\Omega _n=(z_1,\ldots , z_n)\) be a configuration of \(n\) distinct points on \(\mathbb{S }^1\) ordered counterclockwise, and with f as in Theorem 1, suppose \(\varvec{\Delta }=(\Delta _1,\ldots , \Delta _n)\in \mathbb{R }^n\) is such that

  1. (a)

    \(0\le \Delta _k \le (1/2) \mathrm{sep}(\Omega _n)\)    for \(k=1,\ldots , n\), and

  2. (b)

    there is some \(j\in \{1,\ldots , n\}\) for which \(\Delta _j=0\).

Let \(\Omega _n^{\prime }:=\tau _{\varvec{\Delta }}(\Omega _n)=(z^{\prime }_1,\ldots , z^{\prime }_n)\). Then \(\widehat{z^{\prime }_j z^{\prime }_{j+1}}\subset \widehat{z_jz_{j+1}}\) and

$$\begin{aligned} U^f(\Omega _n;z) \le U^f(\Omega _n^{\prime };z) \quad (z\in \widehat{z_j^{\prime }z_{j+1}^{\prime }}). \end{aligned}$$
(14)

If f is strictly convex on \((0,\pi ]\) and \(\Delta _k>0\) for at least one k, then the inequality (14) is strict.

We remark that \(\Delta _k=0\) for all \(k=1,\ldots , n\) is equivalent to saying that the points are equally spaced.

Proof

Recalling (12), it follows from condition (a) that \((z^{(\ell )}_1,\ldots , z^{(\ell )}_n):= \omega _{n,\varvec{\Delta }}^{(\ell )}\) are counterclockwise ordered. Since \(\Delta _j=0\) and \(\Delta _k\ge 0\) for \(k=1,\ldots ,n\), the points \(z^{(\ell )}_j\) and \(z^{(\ell )}_{j+1}\) are moved at most once as \(\ell \) varies from 1 to n and move toward each other, while remaining in the complement of all other subarcs \(\widehat{z^{(\ell )}_k z^{(\ell )}_{k+1}}\), i.e.,

$$\begin{aligned} \widehat{z^{\prime }_jz^{\prime }_{j+1}}=\widehat{z^{(n)}_jz^{(n)}_{j+1}}\subseteq \widehat{z^{(\ell )}_jz^{(\ell )}_{j+1}}\subseteq \widehat{z^{(\ell )}_{k+1}z^{(\ell )}_k}, \end{aligned}$$

for \(k\in \{1,\ldots ,n\}\setminus \{j\}\) and \(\ell \in \{1,\ldots , n\}\). Lemma 4 implies that, for \(\ell =1,\ldots , n\), we have \(U^f(\omega ^{(\ell -1)}_n;z) \le U^f(\omega ^{(\ell )}_n;z)\) for \(z\in \widehat{z^{(\ell )}_j z^{(\ell )}_{j+1}}\) (where \(\omega ^{(0)}_n:=\omega _n\)) and the inequality is strict if \(\Delta _\ell >0\). Hence, (14) holds and the inequality is strict if f is strictly convex and \(\Delta _k>0\) for some \(k=1,\ldots , n\). \(\square \)

We now proceed with the proof of Theorem 1. Let \(\omega _n=(z_1,\ldots , z_n)\) be a non-equally spaced configuration of n (not necessarily distinct) points on \(\mathbb{S }^1\) ordered counterclockwise. By Lemma 5, there is some equally spaced configuration \(\omega _n^{\prime }\) (i.e., \(\alpha ^{\prime }_k=2\pi /n\) for \(k=1,\ldots , n\)) and some \(\varvec{\Delta ^*}=(\Delta _1^*,\ldots , \Delta _n^*)\) such that (a) \(\omega _n^{\prime }=\tau _{\varvec{\Delta ^*}}(\omega _n)\), (b) \(\Delta ^*_k\ge 0\) for \(k=1,\ldots ,n\), and (c) \(\Delta ^*_j=0\) for some \(j\in \{1,\ldots ,n\}\). Then (10) holds with \(\alpha _k:=\gamma (\widehat{z_k,z_{k+1}})\) and \(\alpha ^{\prime }_k:=2\pi /n\). Since \(\omega _n\) is not equally spaced, we have \(\Delta ^*_k>0\) for at least one value of k.

For \(0\le t\le 1\), let \(\omega _n^t:=\tau _{(t\varvec{\Delta ^*})}(\omega _n)=(z_1^t,\ldots , z_n^t)\) and, for \(k=1,\ldots , n\), let \(\alpha _k^t:=\gamma (\widehat{z_k^t z_{k+1}^t})\). Recalling (10), observe that

$$\begin{aligned} \alpha _k^t&= \alpha _k-t(\Delta _{k-1}+2\Delta _k-\Delta _{k+1})\\&= \alpha _k+t(2\pi /n-\alpha _k)\\&= (1-t)\alpha _k+t(2\pi /n), \end{aligned}$$

for \(0\le t\le 1\) and \(k=1,\ldots , n\), and so \(\text{ sep }(\omega _n^t)\ge t(2\pi /n)\). Now let \(0<t<s<\min (1,t(1+\pi /(nD)))\), where \(D:=\max \{\Delta _k : 1\le k\le n\}\). Then Lemma 6 (with \(\Omega _n=\omega _n^t, \varvec{\Delta }=(s-t)\varvec{\Delta ^*}\), and \(\Omega _n^{\prime }=\tau _{\varvec{\Delta }}(\Omega _n)=\omega _n^s\)) implies that \(\widehat{z_j^s z_{j+1}^s}\subseteq \widehat{z_j^t z_{j+1}^t}\) and that

$$\begin{aligned} U^f(\omega _n^t;z) \le U^f(\omega _n^s;z) \quad (z\in \widehat{z_j^sz_{j+1}^s}), \end{aligned}$$
(15)

where the inequality is sharp if f is strictly convex.

Consider the function

$$\begin{aligned} h(t):=\min \{U^f(\omega _n^t;z): z\in \widehat{z_j^t z_{j+1}^t}\}, \quad (0\le t\le 1). \end{aligned}$$

Observe that

$$\begin{aligned} h(t)\le \min \{U^f(\omega _n^t;z): {z\in \widehat{z_j^s z_{j+1}^s}}\}\le \min \{U^f(\omega _n^s;z): {z\in \widehat{z_j^s z_{j+1}^s}}\}= h(s), \end{aligned}$$

for \(0<t<s<\min (1,t(1+\pi /(nD)))\). It is then easy to verify that h is non-decreasing on \((0,1)\). Since \(\omega _n^t\) depends continuously on t, the function h is continuous on \([0,1]\) and thus h is non-decreasing on \([0,1]\).

We then obtain the desired inequality

$$\begin{aligned} M^f(\omega _n;\mathbb{S }^1)\le h(0) \le h(1)=M^f(\omega _n^{\prime };\mathbb{S }^1), \end{aligned}$$

where the last equality is a consequence of the fact that \(\omega _n^{\prime }\) is an equally spaced configuration and so the minimum of \(U^f(\omega _n^{\prime };z)\) over \(\mathbb{S }^1\) is the same as the minimum over \(\widehat{z_j^{\prime }z_{j+1}^{\prime }}\). If f is strictly convex, then \(h(0)<h(1)\) showing that any optimal f-polarization configuration must be equally spaced. This completes the proof of Theorem 1. \(\square \)